Anti-Black Racism Workshop during the Vera C. Rubin Observatory Virtual 2021 Project and Community Workshop

Chapter in An Astronomical Inclusion Revolution, IOP Publishing (2024) 7-1-7-12

Authors:

Andrés A Plazas Malagón, Federica Bianco, Ranpal Gill, Robert D Blum, Rosaria Sara Bonito, Wil O’Mullane, Alsyha Shugart, Rachel Street, Aprajita Verma

Planet Hunters TESS. V. A Planetary System Around a Binary Star, Including a Mini-Neptune in the Habitable Zone

Astronomical Journal IOP Publishing 167:5 (2024) 241

Authors:

Nora L Eisner, Samuel K Grunblatt, Oscar Barragán, Thea H Faridani, Chris Lintott, Suzanne Aigrain, Cole Johnston, Ian R Mason, Keivan G Stassun, Megan Bedell, Andrew W Boyle, David R Ciardi, Catherine A Clark, Guillaume Hebrard, David W Hogg, Steve B Howell, Baptiste Klein, Joe Llama, Joshua N Winn, Lily L Zhao, Joseph M Akana Murphy, Corey Beard, Casey L Brinkman, Ashley Chontos, Safaa Alhassan, Daval J Amratlal, Lais I Antonel, Simon LS Bentzen, Milton KD Bosch, David Bundy, Itayi Chitsiga, Jérôme F Delaunay, Xavier Doisy, Richard Ferstenou

Abstract:

We report on the discovery and validation of a transiting long-period mini-Neptune orbiting a bright (V = 9.0 mag) G dwarf (TOI 4633; R = 1.05 R ⊙, M = 1.10 M ⊙). The planet was identified in data from the Transiting Exoplanet Survey Satellite by citizen scientists taking part in the Planet Hunters TESS project. Modelling of the transit events yields an orbital period of 271.9445 ± 0.0040 days and radius of 3.2 ± 0.20 R ⊕. The Earth-like orbital period and an incident flux of 1.56−0.16+0.20 F ⊕ places it in the optimistic habitable zone around the star. Doppler spectroscopy of the system allowed us to place an upper mass limit on the transiting planet and revealed a non-transiting planet candidate in the system with a period of 34.15 ± 0.15 days. Furthermore, the combination of archival data dating back to 1905 with new high angular resolution imaging revealed a stellar companion orbiting the primary star with an orbital period of around 230 yr and an eccentricity of about 0.9. The long period of the transiting planet, combined with the high eccentricity and close approach of the companion star makes this a valuable system for testing the formation and stability of planets in binary systems.

Extragalactic Magnetism with SOFIA (SALSA Legacy Program). VII. A Tomographic View of Far-infrared and Radio Polarimetric Observations through MHD Simulations of Galaxies

The Astrophysical Journal American Astronomical Society 966:1 (2024) 43

Authors:

Sergio Martin-Alvarez, Enrique Lopez-Rodriguez, Tara Dacunha, Susan E Clark, Alejandro S Borlaff, Rainer Beck, Francisco Rodríguez Montero, Seoyoung L Jung, Julien Devriendt, Adrianne Slyz, Julia Christine Roman-Duval, Evangelia Ntormousi, Mehrnoosh Tahani, Kandaswamy Subramanian, Daniel A Dale, Pamela M Marcum, Konstantinos Tassis, Ignacio del Moral-Castro, Le Ngoc Tram, Matt J Jarvis

Abstract:

The structure of magnetic fields in galaxies remains poorly constrained, despite the importance of magnetism in the evolution of galaxies. Radio synchrotron and far-infrared (FIR) polarization and polarimetric observations are the best methods to measure galactic scale properties of magnetic fields in galaxies beyond the Milky Way. We use synthetic polarimetric observations of a simulated galaxy to identify and quantify the regions, scales, and interstellar medium (ISM) phases probed at FIR and radio wavelengths. Our studied suite of magnetohydrodynamical cosmological zoom-in simulations features high-resolutions (10 pc full-cell size) and multiple magnetization models. Our synthetic observations have a striking resemblance to those of observed galaxies. We find that the total and polarized radio emission extends to approximately double the altitude above the galactic disk (half-intensity disk thickness of h I radio ∼ h PI radio = 0.23 ± 0.03 kpc) relative to the total FIR and polarized emission that are concentrated in the disk midplane (h I FIR ∼ h PI FIR = 0.11 ± 0.01 kpc). Radio emission traces magnetic fields at scales of ≳300 pc, whereas FIR emission probes magnetic fields at the smallest scales of our simulations. These scales are comparable to our spatial resolution and well below the spatial resolution (<300 pc) of existing FIR polarimetric measurements. Finally, we confirm that synchrotron emission traces a combination of the warm neutral and cold neutral gas phases, whereas FIR emission follows the densest gas in the cold neutral phase in the simulation. These results are independent of the ISM magnetic field strength. The complementarity we measure between radio and FIR wavelengths motivates future multiwavelength polarimetric observations to advance our knowledge of extragalactic magnetism.

Planet Hunters NGTS: New Planet Candidates from a Citizen Science Search of the Next Generation Transit Survey Public Data

Astronomical Journal IOP Publishing 167:5 (2024) 238

Authors:

Sean M O’Brien, Megan E Schwamb, Samuel Gill, Christopher A Watson, Matthew R Burleigh, Alicia Kendall, Sarah L Casewell, David R Anderson, José I Vines, James S Jenkins, Douglas R Alves, Laura Trouille, Solène Ulmer-Moll, Edward M Bryant, Ioannis Apergis, Matthew Battley, Daniel Bayliss, Nora L Eisner, Edward Gillen, Michael R Goad, Maximilian N Günther, Beth A Henderson, Jeong-Eun Heo, David G Jackson, Chris Lintott

Abstract:

We present the results from the first two years of the Planet Hunters Next Generation Transit Survey (NGTS) citizen science project, which searches for transiting planet candidates in data from the NGTS by enlisting the help of members of the general public. Over 8000 registered volunteers reviewed 138,198 light curves from the NGTS Public Data Releases 1 and 2. We utilize a user weighting scheme to combine the classifications of multiple users to identify the most promising planet candidates not initially discovered by the NGTS team. We highlight the five most interesting planet candidates detected through this search, which are all candidate short-period giant planets. This includes the TIC-165227846 system that, if confirmed, would be the lowest-mass star to host a close-in giant planet. We assess the detection efficiency of the project by determining the number of confirmed planets from the NASA Exoplanet Archive and TESS Objects of Interest (TOIs) successfully recovered by this search and find that 74% of confirmed planets and 63% of TOIs detected by NGTS are recovered by the Planet Hunters NGTS project. The identification of new planet candidates shows that the citizen science approach can provide a complementary method to the detection of exoplanets with ground-based surveys such as NGTS.

Enabling Science from the Rubin Alert Stream with Lasair

(2024)

Authors:

Roy D Williams, Gareth P Francis, Andy Lawrence, Terence M Sloan, Stephen J Smartt, Ken W Smith, David R Young