Heavy Quarkonium Physics
ArXiv hep-ph/0412158 (2004)
Abstract:
This report is the result of the collaboration and research effort of the Quarkonium Working Group over the last three years. It provides a comprehensive overview of the state of the art in heavy-quarkonium theory and experiment, covering quarkonium spectroscopy, decay, and production, the determination of QCD parameters from quarkonium observables, quarkonia in media, and the effects on quarkonia of physics beyond the Standard Model. An introduction to common theoretical and experimental tools is included. Future opportunities for research in quarkonium physics are also discussed.Measurement of IWTO-19 ash content by Near Infrared Reflectance (NIR) Analysis
Wool Technology and Sheep Breeding 52:3 (2004) 245-259
Abstract:
The prediction of ash content of laboratory-scoured core samples utilising Near Infrared Reflectance Analysis (NIRA) has been investigated. Modified Partial Least Squares (MPLS) Regression was found to underestimate ash content when the sample being tested contained significant quantities of dag. The underestimation was not a consequence of saturation of the NIRA detector but rather appeared to be due to an inability of the MPLS technique to adequately account for dag which was present in the sample but masked by wool. Application of Artificial Neu ral Networks (ANN) Regression to the calibration data set produced improved results. The underestimation at higher ash levels was not as evident, indicating that ANN is better able to utilise the spectral information to predict total ash content. High levels of dag were found to adversely affect the repeatability of the IWTO-19 method for determining ash content. Uneven distribution of dag within samples was believed to be responsible. This finding has implications for NIRA, as any method of prediction can only be as good as the reference method to which it is calibrated.Recent results from SNO
Nuclear Physics B - Proceedings Supplements 137:1-3 SPEC. ISS. (2004) 15-20
Abstract:
The SNO project has now completed two of its three major phases of operation. The no-oscillation hypothesis has been ruled out at 5σ in the pure heavy water phase and 8σ in the salt phase. Discussion in terms of the SeeSaw model is presented. © 2004 Published by Elsevier B.V.Design Constraints for a WIMP Dark Matter and pp Solar Neutrino Liquid Neon Scintillation Detector
ArXiv nucl-ex/0410025 (2004)
Abstract:
Detailed Monte-Carlo simulations were used to evaluate the performance of a liquid neon scintillation detector for dark matter and low-energy solar neutrino interactions. A maximum-likelihood event vertex fitter including PMT time information was developed, which significantly improves position resolution over spatial-only algorithms, and substantially decreases the required detector size and achievable analysis energy threshold. The ultimate sensitivity to WIMP dark matter and the pp flux uncertainty are evaluated as a function of detector size. The dependence on the neon scintillation and PMT properties are evaluated. A 300 cm radius detector would allow a ~13 keV threshold, a pp flux uncertainty of ~1%, and limits on the spin-independent WIMP-nucleon cross-section of ~10^{-46} cm^2 for a 100 GeV WIMP, using commercially available PMTs. Detector response calibration and background requirements for a precision pp measurement are defined. Internal radioactivity requirements for uranium, thorium, and krypton are specified, and it is shown that the PMT data could be used for an in-situ calibration of the troublesome krypton-85. A set of measurements of neon scintillation properties and PMT characteristics are outlined which will be needed in order to evaluate feasibility and fully optimize the design of a neon-based detector.Comparison of Three-jet Events in Proton-Antiproton Collisions at Center-of-mass Energy 1.8 TeV to Predictions from a Next-to-leading Order QCD Calculation
ArXiv hep-ex/0410018 (2004)