REPUBLIC: A variability-preserving systematic-correction algorithm for PLATO's multi-camera light curves
nuance: Efficient detection of planets transiting active stars
Modelling stellar variability in archival HARPS data: I - rotation and activity properties with multi-dimensional Gaussian processes
Abstract:
Although instruments for measuring the radial velocities (RVs) of stars now routinely reach sub-meter per second accuracy, the detection of low-mass planets is still very challenging. The rotational modulation and evolution of spots and/or faculae can induce variations in the RVs at the level of a few m/s in Sun-like stars. To overcome this, a multi-dimensional Gaussian Process framework has been developed to model the stellar activity signal using spectroscopic activity indicators together with the RVs. A recently published computationally efficient implementation of this framework, S+LEAF 2, enables the rapid analysis of large samples of targets with sizeable data sets. In this work, we apply this framework to HARPS observations of 268 well-observed targets with precisely determined stellar parameters. Our long-term goal is to quantify the effectiveness of this framework to model and mitigate activity signals for stars of different spectral types and activity levels. In this first paper in the series, we initially focus on the activity indicators (S-index and Bisector Inverse Slope), and use them to a) measure rotation periods for 49 slow rotators in our sample, b) explore the impact of these results on the spin-down of middle-aged late F, G & K stars, and c) explore indirectly how the spot to facular ratio varies across our sample. Our results should provide valuable clues for planning future RV planet surveys such as the Terra Hunting Experiment or the PLATO ground-based follow-up observations program, and help fine-tune current stellar structure and evolution models.Modelling stellar variability in archival HARPS data: I -- Rotation and activity properties with multi-dimensional Gaussian Processes
PlatoSim: an end-to-end PLATO camera simulator for modelling high-precision space-based photometry
Abstract:
Context. PLAnetary Transits and Oscillations of stars (PLATO) is the ESA M3 space mission dedicated to detect and characterise transiting exoplanets including information from the asteroseismic properties of their stellar hosts. The uninterrupted and high-precision photometry provided by space-borne instruments such as PLATO require long preparatory phases. An exhaustive list of tests are paramount to design a mission that meets the performance requirements and, as such, simulations are an indispensable tool in the mission preparation.
Aims. To accommodate PLATO’s need of versatile simulations prior to mission launch that at the same time describe innovative yet complex multi-telescope design accurately, in this work we present the end-to-end PLATO simulator specifically developed for that purpose, namely PlatoSim. We show, step-by-step, the algorithms embedded into the software architecture of PlatoSim that allow the user to simulate photometric time series of charge-coupled device (CCD) images and light curves in accordance to the expected observations of PLATO.
Methods. In the context of the PLATO payload, a general formalism of modelling, end-to-end, incoming photons from the sky to the final measurement in digital units is discussed. According to the light path through the instrument, we present an overview of the stellar field and sky background, the short- and long-term barycentric pixel displacement of the stellar sources, the cameras and their optics, the modelling of the CCDs and their electronics, and all main random and systematic noise sources.
Results. We show the strong predictive power of PlatoSim through its diverse applicability and contribution to numerous working groups within the PLATO mission consortium. This involves the ongoing mechanical integration and alignment, performance studies of the payload, the pipeline development, and assessments of the scientific goals.
Conclusions. PlatoSim is a state-of-the-art simulator that is able to produce the expected photometric observations of PLATO to a high level of accuracy. We demonstrate that PlatoSim is a key software tool for the PLATO mission in the preparatory phases until mission launch and prospectively beyond.