Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Myles Allen CBE FRS

Statutory Professor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics
Myles.Allen@physics.ox.ac.uk
Telephone: 01865 (2)72085,01865 (2)75895
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

Broad range of 2050 warming from an observationally constrained large climate model ensemble

Nature Geoscience 5:4 (2012) 256-260

Authors:

DJ Rowlands, DJ Frame, D Ackerley, T Aina, BBB Booth, C Christensen, M Collins, N Faull, CE Forest, BS Grandey, E Gryspeerdt, EJ Highwood, WJ Ingram, S Knight, A Lopez, N Massey, F McNamara, N Meinshausen, C Piani, SM Rosier, BM Sanderson, LA Smith, DA Stone, M Thurston, K Yamazaki, Y Hiro Yamazaki, MR Allen

Abstract:

Incomplete understanding of three aspects of the climate system-equilibrium climate sensitivity, rate of ocean heat uptake and historical aerosol forcing-and the physical processes underlying them lead to uncertainties in our assessment of the global-mean temperature evolution in the twenty-first century 1,2. Explorations of these uncertainties have so far relied on scaling approaches 3,4, large ensembles of simplified climate models 1,2, or small ensembles of complex coupled atmosphere-ocean general circulation models 5,6 which under-represent uncertainties in key climate system properties derived from independent sources 7,9. Here we present results from a multi-thousand-member perturbed-physics ensemble of transient coupled atmosphere-ocean general circulation model simulations. We find that model versions that reproduce observed surface temperature changes over the past 50 years show global-mean temperature increases of 1.4-3 K by 2050, relative to 1961-1990, under a mid-range forcing scenario. This range of warming is broadly consistent with the expert assessment provided by the Intergovernmental Panel on Climate Change Fourth Assessment Report, but extends towards larger warming than observed in ensembles-of-opportunity 5 typically used for climate impact assessments. From our simulations, we conclude that warming by the middle of the twenty-first century that is stronger than earlier estimates is consistent with recent observed temperature changes and a mid-range 'no mitigation' scenario for greenhouse-gas emissions. © 2012 Macmillan Publishers Limited. All rights reserved.
More details from the publisher
More details

Reconciling two approaches to attribution of the 2010 Russian heat wave

Geophysical Research Letters 39:4 (2012)

Authors:

FEL Otto, N Massey, GJ Van Oldenborgh, RG Jones, MR Allen

Abstract:

In the summer 2010 Western Russia was hit by an extraordinary heat wave, with the region experiencing by far the warmest July since records began. Whether and to what extent this event is attributable to anthropogenic climate change is controversial. Dole et al. (2011) report the 2010 Russian heat wave was "mainly natural in origin" whereas Rahmstorf and Coumou (2011) write that with a probability of 80% "the 2010 July heat record would not have occurred" without the large-scale climate warming since 1980, most of which has been attributed to the anthropogenic increase in greenhouse gas concentrations. The latter explicitly state that their results "contradict those of Dole et al. (2011)." Here we use the results from a large ensemble simulation experiment with an atmospheric general circulation model to show that there is no substantive contradiction between these two papers, in that the same event can be both mostly internally-generated in terms of magnitude and mostly externally-driven in terms of occurrence-probability. The difference in conclusion between these two papers illustrates the importance of specifying precisely what question is being asked in addressing the issue of attribution of individual weather events to external drivers of climate. Copyright 2012 by the American Geophysical Union.
More details from the publisher
More details

The link between a global 2°C warming threshold and emissions in years 2020, 2050 and beyond

Environmental Research Letters 7:1 (2012)

Authors:

C Huntingford, JA Lowe, LK Gohar, NHA Bowerman, MR Allen, SCB Raper, SM Smith

Abstract:

In the Copenhagen Accord, nations agreed on the need to limit global warming to two degrees to avoid potentially dangerous climate change, while in policy circles negotiations have placed a particular emphasis on emissions in years 2020 and 2050. We investigate the link between the probability of global warming remaining below two degrees (above pre-industrial levels) right through to year 2500 and what this implies for emissions in years 2020 and 2050, and any long-term emissions floor. This is achieved by mapping out the consequences of alternative emissions trajectories, all in a probabilistic framework and with results placed in a simple-to-use set of graphics. The options available for carbon dioxide-equivalent (CO2e) emissions in years 2020 and 2050 are narrow if society wishes to stay, with a chance of more likely than not, below the 2°C target. Since cumulative emissions of long-lived greenhouse gases, and particularly CO2, are a key determinant of peak warming, the consequence of being near the top of emissions in the allowable range for 2020 is reduced flexibility in emissions in 2050 and higher required rates of societal decarbonization. Alternatively, higher 2020 emissions can be considered as reducing the probability of limiting warming to 2°C. We find that the level of the long-term emissions floor has a strong influence on allowed 2020 and 2050 emissions for two degrees of global warming at a given probability. We place our analysis in the context of emissions pledges for year 2020 made at the end of and since the 2009 COP15 negotiations in Copenhagen. © 2012 IOP Publishing Ltd.
More details from the publisher
More details

EXPLAINING EXTREME EVENTS OF 2011 FROM A CLIMATE PERSPECTIVE

BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 93:7 (2012) 1041-1067

Authors:

Thomas C Peterson, Peter A Stott, Stephanie Herring, Francis W Zwiers, Gabriele C Hegerl, Seung-Ki Min, Xuebin Zhang, Geert Jan van Oldenborgh, Anne van Urk, Myles Allen, Chris Funk, David E Rupp, Philip W Mote, Neil Massey, Cameron J Rye, Richard Jones, Julien Cattiaux, Pascal Yiou, N Massey, T Aina, FEL Otto, S Wilson, RG Jones, Nikolaos Christidis
More details from the publisher

Reconciling two approaches to attribution of the 2010 Russian heat wave

Geophysical Research Letters 39:4 (2012)

Authors:

FEL Otto, N Massey, GJ Van Oldenborgh, RG Jones, MR Allen
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • Current page 37
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet