Difficult but not impossible
Nature Climate Change Springer Science and Business Media LLC 1:2 (2011) 72-72
Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000.
Nature 470:7334 (2011) 382-385
Abstract:
Interest in attributing the risk of damaging weather-related events to anthropogenic climate change is increasing. Yet climate models used to study the attribution problem typically do not resolve the weather systems associated with damaging events such as the UK floods of October and November 2000. Occurring during the wettest autumn in England and Wales since records began in 1766, these floods damaged nearly 10,000 properties across that region, disrupted services severely, and caused insured losses estimated at £1.3 billion (refs 5, 6). Although the flooding was deemed a 'wake-up call' to the impacts of climate change at the time, such claims are typically supported only by general thermodynamic arguments that suggest increased extreme precipitation under global warming, but fail to account fully for the complex hydrometeorology associated with flooding. Here we present a multi-step, physically based 'probabilistic event attribution' framework showing that it is very likely that global anthropogenic greenhouse gas emissions substantially increased the risk of flood occurrence in England and Wales in autumn 2000. Using publicly volunteered distributed computing, we generate several thousand seasonal-forecast-resolution climate model simulations of autumn 2000 weather, both under realistic conditions, and under conditions as they might have been had these greenhouse gas emissions and the resulting large-scale warming never occurred. Results are fed into a precipitation-runoff model that is used to simulate severe daily river runoff events in England and Wales (proxy indicators of flood events). The precise magnitude of the anthropogenic contribution remains uncertain, but in nine out of ten cases our model results indicate that twentieth-century anthropogenic greenhouse gas emissions increased the risk of floods occurring in England and Wales in autumn 2000 by more than 20%, and in two out of three cases by more than 90%.Cumulative carbon emissions, emissions floors and short-term rates of warming: implications for policy.
Philos Trans A Math Phys Eng Sci 369:1934 (2011) 45-66
Abstract:
A number of recent studies have found a strong link between peak human-induced global warming and cumulative carbon emissions from the start of the industrial revolution, while the link to emissions over shorter periods or in the years 2020 or 2050 is generally weaker. However, cumulative targets appear to conflict with the concept of a 'floor' in emissions caused by sectors such as food production. Here, we show that the introduction of emissions floors does not reduce the importance of cumulative emissions, but may make some warming targets unachievable. For pathways that give a most likely warming up to about 4°C, cumulative emissions from pre-industrial times to year 2200 correlate strongly with most likely resultant peak warming regardless of the shape of emissions floors used, providing a more natural long-term policy horizon than 2050 or 2100. The maximum rate of CO(2)-induced warming, which will affect the feasibility and cost of adapting to climate change, is not determined by cumulative emissions but is tightly aligned with peak rates of emissions. Hence, cumulative carbon emissions to 2200 and peak emission rates could provide a clear and simple framework for CO(2) mitigation policy.Regional climate response to solar-radiation management
Nature Geoscience 3:8 (2010) 537-541
Abstract:
Concerns about the slow pace of climate mitigation have led to renewed dialogue about solar-radiation management, which could be achieved by adding reflecting aerosols to the stratosphere. Modelling studies suggest that solar-radiation management could produce stabilized global temperatures and reduced global precipitation. Here we present an analysis of regional differences in a climate modified by solar-radiation management, using a large-ensemble modelling experiment that examines the impacts of 54 scenarios for global temperature stabilization. Our results confirm that solar-radiation management would generally lead to less extreme temperature and precipitation anomalies, compared with unmitigated greenhouse gas emissions. However, they also illustrate that it is physically not feasible to stabilize global precipitation and temperature simultaneously as long as atmospheric greenhouse gas concentrations continue to rise. Over time, simulated temperature and precipitation in large regions such as China and India vary significantly with different trajectories for solar-radiation management, and they diverge from historical baselines in different directions. Hence, it may not be possible to stabilize the climate in all regions simultaneously using solar-radiation management. Regional diversity in the response to different levels of solar-radiation management could make consensus about the optimal level of geoengineering difficult, if not impossible, to achieve. © 2010 Macmillan Publishers Limited. All rights reserved.Embracing an uncertain future
Nature Springer Nature 466:7302 (2010) 31-31