Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Myles Allen CBE FRS

Statutory Professor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics
Myles.Allen@physics.ox.ac.uk
Telephone: 01865 (2)72085,01865 (2)75895
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

A data study of the influence of the equatorial upper stratosphere on northern‐hemisphere stratospheric sudden warmings

Quarterly Journal of the Royal Meteorological Society Wiley 127:576 (2001) 1985-2003

Authors:

LJ Gray, SJ Phipps, TJ Dunkerton, MP Baldwin, EF Drysdale, MR Allen
More details from the publisher
More details

Climate change. Uncertainty in the IPCC's Third Assessment Report.

Science (New York, N.Y.) 293:5529 (2001) 430-433

Authors:

M Allen, S Raper, J Mitchell
More details from the publisher
More details
More details

Evidence for nonlinearity in observed stratospheric circulation changes

Journal of Geophysical Research Atmospheres 106:D8 (2001) 7891-7901

Authors:

NP Gillett, MP Baldwin, MR Allen

Abstract:

The leading mode of variability of the lower atmosphere circulation in the Northern Hemisphere is a largely zonally symmetric mode known as the Arctic Oscillation. We calculate Arctic Oscillation (AO) indices on a range of levels from 1000 to 10 hPa by means of a principal component analysis of National Centers for Environmental Prediction daily geopotential height anomalies. We find the apparent downward propagation of anomalies noted by other authors to be statistically significant compared to a red noise model. By examining histograms of these indices for each month, we note that the distribution of the index is generally close to Gaussian in the troposphere. In the stratosphere, however, the index is negatively skewed in the winter and positively skewed in the spring. We conclude that the positive skewness in April results from the coexistence of distinct summer and winter circulation states, and by examining polar stratospheric temperatures, we conclude that the negative skewness in January may be due to the radiatively determined limit on the vortex strength. This radiative limit responds relatively slowly to anthropogenic forcing, whereas changes in planetary wave forcing could have a much faster impact on the number of warm events. This suggests a hypothesis that the vortex strength may respond nonlinearly to anthropogenic forcing, which is supported by an observed change in the shape of the histograms of 20-200 hPa AO indices in January over the past 40 years. Copyright 2001 by the American Geophysical Union.
More details from the publisher
More details

Identifying signals from intermittent low-frequency behaving systems

Tellus A Dynamic Meteorology and Oceanography Stockholm University Press 53:4 (2001) 469

Authors:

A Hannachi, MR Allen
More details from the publisher

Allowing for solar forcing in the detection of human influence on tropospheric temperatures

GEOPHYSICAL RESEARCH LETTERS 28:8 (2001) 1555-1558

Authors:

DC Hill, MR Allen, PA Stott
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 54
  • Page 55
  • Page 56
  • Page 57
  • Current page 58
  • Page 59
  • Page 60
  • Page 61
  • Page 62
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet