Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr James Allison

CDF (Christ Church)

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
james.allison@physics.ox.ac.uk
Christ Church webpage
  • About
  • Teaching
  • Research
  • Publications

COALAS: I. ATCA CO(1-0) survey and luminosity function in the Spiderweb protocluster at z=2.16

Astronomy and Astrophysics EDP Sciences 652 (2021) A11

Authors:

S Jin, H Dannerbauer, B Emonts, P Serra, Cdp Lagos, Ap Thomson, L Bassini, M Lehnert, James Allison, Jb Champagne, B Indermuehle, Rp Norris, N Seymour, R Shimakawa, Cm Casey, C De Breuck, G Drouart, N Hatch, T Kodama, Y Koyama, P Macgregor, G Miley, R Overzier, Jm Perez-Martinez, Jm Rodriguez-Espinosa, H Roettgering, M Sanchez Portal, B Ziegler

Abstract:

We report a detailed CO(1-0) survey of a galaxy protocluster field at z = 2.16, based on 475 h of observations with the Australia Telescope Compact Array. We constructed a large mosaic of 13 individual pointings, covering an area of 21 arcmin2 and ±6500 km s-1 range in velocity. We obtained a robust sample of 46 CO(1-0) detections spanning z = 2.09 - 2.22, constituting the largest sample of molecular gas measurements in protoclusters to date. The CO emitters show an overdensity at z = 2.12 - 2.21, suggesting a galaxy super-protocluster or a protocluster connected to large-scale filaments of ∼120 cMpc in size. We find that 90% of CO emitters have distances >0.′5-4′ to the center galaxy, indicating that small area surveys would miss the majority of gas reservoirs in similar structures. Half of the CO emitters have velocities larger than escape velocities, which appears gravitationally unbound to the cluster core. These unbound sources are barely found within the R200 radius around the center, which is consistent with a picture in which the cluster core is collapsed while outer regions are still in formation. Compared to other protoclusters, this structure contains a relatively higher number of CO emitters with relatively narrow line widths and high luminosities, indicating galaxy mergers. We used these CO emitters to place the first constraint on the CO luminosity function and molecular gas density in an overdense environment. The amplitude of the CO luminosity function is 1.6 ± 0.5 orders of magnitude higher than that observed for field galaxy samples at z ∼ 2, and one order of magnitude higher than predictions for galaxy protoclusters from semi-analytical SHARK models. We derive a high molecular gas density of 0.6 - 1.3 × 109Mpdbl cMpc-3 for this structure, which is consistent with predictions for cold gas density of massive structures from hydro-dynamical DIANOGA simulations.
More details from the publisher
Details from ORA
More details

Australian square kilometre array pathfinder: I. system description

Publications of the Astronomical Society of Australia Astronomical Society of Australia 38 (2021) e009

Authors:

Aw Hotan, Jd Bunton, Ap Chippendale, M Whiting, J Tuthill, Va Moss, D McConnell, Sw Amy, Mt Huynh, Jr Allison, Cs Anderson, Kw Bannister, E Bastholm, R Beresford, Dc-J Bock, R Bolton, Jm Chapman, K Chow, Jd Collier, Fr Cooray, Tj Cornwell, Pj Diamond, Pg Edwards, Ij Feain, Tmo Franzen, D George, N Gupta, Ga Hampson, L Harvey-Smith, Db Hayman, I Heywood, C Jacka, Ca Jackson, S Jackson, K Jeganathan, S Johnston, M Kesteven, D Kleiner, Bs Koribalski, K Lee-Waddell, E Lenc, Es Lensson, S Mackay, Ek Mahony, Nm McClure-Griffiths, R McConigley, P Mirtschin, Ak Ng, Rp Norris

Abstract:

In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers 31 deg2 at 800 MHz. As a two-dimensional array of 36x12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and 1800 MHz and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
More details from the publisher
Details from ORA
More details

A statistical measurement of the H I spin temperature in DLAs at cosmological distances

Monthly Notices of the Royal Astronomical Society Oxford University Press 503:1 (2021) 985-996

Abstract:

Evolution of the cosmic star formation rate (SFR) and molecular gas mass density is expected to be matched by a similarly strong evolution of the fraction of atomic hydrogen (H I) in the cold neutral medium (CNM). We use results from a recent commissioning survey for intervening 21-cm absorbers with the Australian Square Kilometre Array Pathfinder (ASKAP) to construct a Bayesian statistical model of the NH I-weighted harmonic mean spin temperature (Ts) at redshifts between z = 0.37 and 1.0. We find that Ts ≤ 274 K with 95 per cent probability, suggesting that at these redshifts the typical H I gas in galaxies at equivalent DLA column densities may be colder than the Milky Way interstellar medium (Ts, MW ∼ 300 K). This result is consistent with an evolving CNM fraction that mirrors the molecular gas towards the SFR peak at z ∼ 2. We expect that future surveys for H I 21-cm absorption with the current SKA pathfinder telescopes will provide constraints on the CNM fraction that are an order of magnitude greater than presented here.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The distribution and properties of DLAs at z ≤ 2 in the EAGLE simulations

Monthly Notices of the Royal Astronomical Society Oxford University Press 501:3 (2020) 4396-4419

Authors:

L Garratt-Smithson, C Power, Cdp Lagos, Arh Stevens, James Allison, Em Sadler

Abstract:

Determining the spatial distribution and intrinsic physical properties of neutral hydrogen on cosmological scales is one of the key goals of next-generation radio surveys. We use the EAGLE galaxy formation simulations to assess the properties of damped Lyman α absorbers (DLAs) that are associated with galaxies and their underlying dark matter haloes between 0 ≤ z ≤ 2. We find that the covering fraction of DLAs increases at higher redshift; a significant fraction of neutral atomic hydrogen (H I) resides in the outskirts of galaxies with stellar mass ≥1010 M⊙; and the covering fraction of DLAs in the circumgalactic medium (CGM) is enhanced relative to that of the interstellar medium (ISM) with increasing halo mass. Moreover, we find that the mean density of the H I in galaxies increases with increasing stellar mass, while the DLAs in high- and low-halo mass systems have higher column densities than those in galaxies with intermediate halo masses (∼1012 M⊙ at z = 0). These high-impact CGM DLAs in high-stellar mass systems tend to be metal poor, likely tracing smooth accretion. Overall, our results point to the CGM playing an important role in DLA studies at high redshift (z ≥ 1). However, their properties are impacted both by numerical resolution and the detailed feedback prescriptions employed in cosmological simulations, particularly that of active galactic nuclei.
More details from the publisher
Details from ORA
More details
More details

Measuring the distance to the black hole candidate X-ray binary MAXI J1348–630 using H I absorption

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 501:1 (2020) L60-L64

Authors:

J Chauhan, Jca Miller-Jones, W Raja, Jr Allison, Pfl Jacob, Ge Anderson, F Carotenuto, S Corbel, Robert Fender, A Hotan, M Whiting, Pa Woudt, B Koribalski, E Mahony

Abstract:

We present neutral hydrogen (H I) absorption spectra of the black hole candidate X-ray binary (XRB) MAXI J1348–630 using the Australian Square Kilometre Array Pathfinder (ASKAP) and MeerKAT. The ASKAP H I spectrum shows a maximum negative radial velocity (with respect to the local standard of rest) of −31 ± 4 km s−1 for MAXI J1348–630, as compared to −50 ± 4 km s−1 for a stacked spectrum of several nearby extragalactic sources. This implies a most probable distance of 2.2+0.5−0.6 kpc for MAXI J1348–630, and a strong upper limit of the tangent point distance at 5.3 ± 0.1 kpc. Our preferred distance implies that MAXI J1348–630 reached 17 ± 10  per cent of the Eddington luminosity at the peak of its outburst, and that the source transited from the soft to the hard X-ray spectral state at 2.5 ± 1.5  per cent of the Eddington luminosity. The MeerKAT H I spectrum of MAXI J1348–630 (obtained from the older, low-resolution 4k mode) is consistent with the re-binned ASKAP spectrum, highlighting the potential of the eventual capabilities of MeerKAT for XRB spectral line studies.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet