Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr James Allison

CDF (Christ Church)

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
james.allison@physics.ox.ac.uk
Christ Church webpage
  • About
  • Teaching
  • Research
  • Publications

ALMACAL – VI. Molecular gas mass density across cosmic time via a blind search for intervening molecular absorbers

Monthly Notices of the Royal Astronomical Society Oxford University Press 490:1 (2019) 1220-1230

Authors:

Anne Klitsch, Celine Peroux, Martin A Zwaan, Ian Smail, Dylan Nelson, Gergo Popping, Chian-Chou Chen, Benedikt Diemer, RJ Ivison, James R Allison, Sebastien Muller, A Mark Swinbank, Aleksandra Hamanowicz, Andrew D Biggs, Rajeshwari Dutta

Abstract:

We are just starting to understand the physical processes driving the dramatic change in cosmic star formation rate between z ∼ 2 and the present day. A quantity directly linked to star formation is the molecular gas density, which should be measured through independent methods to explore variations due to cosmic variance and systematic uncertainties. We use intervening CO absorption lines in the spectra of mm-bright background sources to provide a census of the molecular gas mass density of the Universe. The data used in this work are taken from ALMACAL, a wide and deep survey utilizing the ALMA calibrator archive. While we report multiple Galactic absorption lines and one intrinsic absorber, no extragalactic intervening molecular absorbers are detected. However, due to the large redshift path surveyed (z = 182), we provide constraints on the molecular column density distribution function beyond z ∼ 0. In addition, we probe column densities of N(H2) > 1016 atoms cm−2, 5 orders of magnitude lower than in previous studies. We use the cosmological hydrodynamical simulation IllustrisTNG to show that our upper limits of ρ(H2) 108.3 M Mpc−3 at 0 < z ≤ 1.7 already provide new constraints on current theoretical predictions of the cold molecular phase of the gas. These results are in agreement with recent CO emission-line surveys and are complementary to those studies. The combined constraints indicate that the present decrease of the cosmic star formation rate history is consistent with an increasing depletion of molecular gas in galaxies compared to z ∼ 2.
More details from the publisher
Details from ORA
More details

WALLABY early science - III. An HI study of the spiral galaxy NGC 1566

Monthly Notices of the Royal Astronomical Society Oxford University Press 487:2 (2019) 2797-2817

Authors:

A Elagali, L Staveley-Smith, J Rhee, OI Wong, A Bosma, T Westmeier, BS Koribalski, G Heald, B-Q For, D Kleiner, K Lee-Waddell, JP Madrid, A Popping, TN Reynolds, MJ Meyer, JR Allison, CDP Lagos, MA Voronkov, P Serra, L Shao, J Wang, CS Anderson, JD Bunton, G Bekiaris, WM Walsh, VA Kilborn, P Kamphuis, S-H Oh

Abstract:

This paper reports on the atomic hydrogen gas (H I) observations of the spiral galaxy NGC 1566 using the newly commissioned Australian Square Kilometre Array Pathfinder radio telescope. We measure an integrated H I flux density of 180.2 Jy km s−1 emanating from this galaxy, which translates to an H I mass of 1.94×1010M⊙ at an assumed distance of 21.3 Mpc. Our observations show that NGC 1566 has an asymmetric and mildly warped H I disc. The H I-to-stellar mass fraction (MHI/M∗) of NGC 1566 is 0.29, which is high in comparison with galaxies that have the same stellar mass (⁠1010.8 M⊙). We also derive the rotation curve of this galaxy to a radius of 50 kpc and fit different mass models to it. The NFW, Burkert, and pseudo-isothermal dark matter halo profiles fit the observed rotation curve reasonably well and recover dark matter fractions of 0.62, 0.58, and 0.66, respectively. Down to the column density sensitivity of our observations (⁠NHI=3.7×1019 cm−2), we detect no H I clouds connected to, or in the nearby vicinity of, the H I disc of NGC 1566 nor nearby interacting systems. We conclude that, based on a simple analytic model, ram pressure interactions with the IGM can affect the H I disc of NGC 1566 and is possibly the reason for the asymmetries seen in the H I morphology of NGC 1566.
More details from the publisher
Details from ORA
More details

ASKAP commissioning observations of the GAMA 23 field

Publications of the Astronomical Society of Australia Cambridge University Press 36 (2019) e024

Authors:

Denis A Leahy, AM Hopkins, RP Norris, J Marvil, JD Collier, EN Taylor, James R Allison, C Anderson, M Bell, M Bilicki, J Bland-Hawthorn, S Brough, MJI Brown, G Gurkan, L Haryey-Smith, I Heywood, BW Holwerda, J Liske, AR Lopez-Sanchez, D McConnell, A Moffett, MS Owers, KA Pimbblet, W Raja, MA Voronkov

Abstract:

We have observed the G23 field of the Galaxy AndMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ∼48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ∼39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ∼0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR versus radio luminosity relation, the ASKAP-detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical, and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for ∼30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources aremore likely (∼6%) to have an AGN than radio quiet galaxies (∼1%), but the majority of AGN are not detected in radio at this sensitivity.
More details from the publisher
Details from ORA
More details

An HI absorption distance to the black hole candidate X-ray binary MAXI J1535-571

Monthly Notices of the Royal Astronomical Society Oxford University Press 488:1 (2019) L129-L133

Authors:

J Chauhan, JCA Miller-Jones, GE Anderson, W Raja, A Bahramian, A Hotan, B Indermuehle, M Whiting, James Allison, C Anderson, J Bunton, B Koribalski, E Mahony
More details from the publisher
Details from ORA
More details

Ionization of the atomic gas in redshifted radio sources

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 484:1 (2019) 1182-1191

Authors:

SJ Curran, RW Hunstead, HM Johnston, MT Whiting, EM Sadler, JR Allison, R Athreya
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet