Measuring the distance to the black hole candidate X-ray binary MAXI J1348–630 using H I absorption
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 501:1 (2020) L60-L64
Abstract:
We present neutral hydrogen (H I) absorption spectra of the black hole candidate X-ray binary (XRB) MAXI J1348–630 using the Australian Square Kilometre Array Pathfinder (ASKAP) and MeerKAT. The ASKAP H I spectrum shows a maximum negative radial velocity (with respect to the local standard of rest) of −31 ± 4 km s−1 for MAXI J1348–630, as compared to −50 ± 4 km s−1 for a stacked spectrum of several nearby extragalactic sources. This implies a most probable distance of 2.2+0.5−0.6 kpc for MAXI J1348–630, and a strong upper limit of the tangent point distance at 5.3 ± 0.1 kpc. Our preferred distance implies that MAXI J1348–630 reached 17 ± 10 per cent of the Eddington luminosity at the peak of its outburst, and that the source transited from the soft to the hard X-ray spectral state at 2.5 ± 1.5 per cent of the Eddington luminosity. The MeerKAT H I spectrum of MAXI J1348–630 (obtained from the older, low-resolution 4k mode) is consistent with the re-binned ASKAP spectrum, highlighting the potential of the eventual capabilities of MeerKAT for XRB spectral line studies.FLASH early science - discovery of an intervening HI 21-cm absorber from an ASKAP survey of the GAMA 23 field
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 494:3 (2020) 3627-3641
Radio observations of supernova remnant G1.9+0.3
Monthly Notices of the Royal Astronomical Society Oxford University Press 492:2 (2019) 2606-2621
Abstract:
We present 1–10 GHz radio continuum flux density, spectral index, polarization, and rotation measure (RM) images of the youngest known Galactic supernova remnant (SNR) G1.9+0.3, using observations from the Australia Telescope Compact Array. We have conducted an expansion study spanning eight epochs between 1984 and 2017, yielding results consistent with previous expansion studies of G1.9+0.3. We find a mean radio continuum expansion rate of (0.78 ± 0.09) per cent yr−1 (or ∼8900 km s−1 at an assumed distance of 8.5 kpc), although the expansion rate varies across the SNR perimetre. In the case of the most recent epoch between 2016 and 2017, we observe faster-than-expected expansion of the northern region. We find a global spectral index for G1.9+0.3 of −0.81 ± 0.02 (76 MHz–10 GHz). Towards the northern region, however, the radio spectrum is observed to steepen significantly (∼−1). Towards the two so-called (east and west) ‘ears’ of G1.9+0.3, we find very different RM values of 400–600 and 100–200 rad m2, respectively. The fractional polarization of the radio continuum emission reaches (19 ± 2) per cent, consistent with other, slightly older, SNRs such as Cas A.An ASKAP survey for H I absorption towards dust-obscured quasars
Monthly Notices of the Royal Astronomical Society Oxford University Press 489:4 (2019) 4926-4943
Abstract:
Obscuration of quasars by accreted gas and dust, or dusty intervening galaxies, can cause active galactic nuclei (AGN) to be missed in optically selected surveys. Radio observations can overcome this dust bias. In particular, radio surveys searching for H I absorption inform us on how the AGN can impact on the cold neutral gas medium within the host galaxy, or the population of intervening galaxies through the observed line of sight gas kinematics. We present the results of an H I absorption line survey at 0.4 < z < 1 towards 34 obscured quasars with the Australian SKA Pathfinder (ASKAP) commissioning array. We detect three H I absorption lines, with one of these systems previously unknown. Through optical follow-up for two sources, we find that in all detections the H I gas is associated with the AGN, and hence that these AGN are obscured by material within their host galaxies. Most of our sample are compact, and in addition, are either gigahertz peaked spectrum (GPS), or steep spectrum (CSS) sources, both thought to represent young or recently re-triggered radio AGN. The radio spectral energy distribution classifications for our sample agree with galaxy evolution models in which the obscured AGN has only recently become active. Our associated H I detection rate for GPS and compact SS sources matches those of other surveys towards such sources. We also find shallow and asymmetric H I absorption features, which agrees with previous findings that the cold neutral medium in compact radio galaxies is typically kinematically disturbed by the AGN.Measuring the H I mass function below the detection threshold
Monthly Notices of the Royal Astronomical Society Oxford University Press 491:1 (2019) 1227-1242