Reconstructing cosmic growth with kSZ observations in the era of Stage IV experiments
(2016)
Recovering the tidal field in the projected galaxy distribution
Monthly Notices of the Royal Astronomical Society Oxford University Press 460:1 (2016) 256-272
Abstract:
We present a method to recover and study the projected gravitational tidal forces from a galaxy survey containing little or no redshift information. The method and the physical interpretation of the recovered tidal maps as a tracer of the cosmic web are described in detail.We first apply the method to a simulated galaxy survey and study the accuracy with which the cosmic web can be recovered in the presence of different observational effects, showing that the projected tidal field can be estimated with reasonable precision over large regions of the sky. We then apply our method to the Two Micron All-Sky survey and present a publicly available full-sky map of the projected tidal forces in the local Universe. As an example of an application of these data, we further study the distribution of galaxy luminosities across the different elements of the cosmic web, finding that, while more luminous objects are found preferentially in the most dense environments, there is no further segregation by tidal environment.Recovering the Tidal Field in the Projected Galaxy Distribution
(2015)
Ultra-large-scale cosmology in next-generation experiments with single tracers
Astrophysical Journal American Astronomical Society 814:2 (2015) 28pp
Abstract:
Future surveys of large-scale structure will be able to measure perturbations on the scale of the cosmological horizon, and so could potentially probe a number of novel relativistic effects that are negligibly small on subhorizon scales. These effects leave distinctive signatures in the power spectra of clustering observables and, if measurable, would open a new window on relativistic cosmology. We quantify the size and detectability of the effects for the most relevant future large-scale structure experiments: spectroscopic and photometric galaxy redshift surveys, intensity mapping surveys of neutral hydrogen, and radio continuum surveys. Our forecasts show that next-generation experiments, reaching out to redshifts z 4, will not be able to detect previously undetected general-relativistic effects by using individual tracers of the density field, although the contribution of weak lensing magnification on large scales should be clearly detectable. We also perform a rigorous joint forecast for the detection of primordial non-Gaussianity through the excess power it produces in the clustering of biased tracers on large scales, finding that uncertainties of f 1 2 NL s () – ~ should be achievable. We study the level of degeneracy of these large-scale effects with several tracer-dependent nuisance parameters, quantifying the minimal priors on the latter that are needed for an optimal measurement of the former. Finally, we discuss the systematic effects that must be mitigated to achieve this level of sensitivity, and some alternative approaches that should help to improve the constraints. The computational tools developed to carry out this study, which requires the full-sky computation of the theoretical angular power spectra for ( ) 100 redshift bins, as well as realistic models of the luminosity function, are publicly available at http://intensitymapping.physics.ox.ac.uk/codes.html.Constraining ultralarge-scale cosmology with multiple tracers in optical and radio surveys
Physical Review D American Physical Society 92:6 (2015) 063525