Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. David Alonso

Associate Professor of Cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
David.Alonso@physics.ox.ac.uk
Telephone: 01865 (2)288582
Denys Wilkinson Building, room 532B
  • About
  • Publications

Insights on gas thermodynamics from the combination of x-ray and thermal Sunyaev-Zel’dovich data cross correlated with cosmic shear

Physical Review D American Physical Society (APS) 112:4 (2025) 043525

Authors:

Adrien La Posta, David Alonso, Nora Elisa Chisari, Tassia Ferreira, Carlos García-García

Abstract:

We measure the cross-correlation between cosmic shear from the third-year release of the Dark Energy Survey, thermal Sunyaev-Zel’dovich (tSZ) maps from , and x-ray maps from ROSAT. We investigate the possibility of developing a physical model able to jointly describe both measurements, simultaneously constraining the spatial distribution and thermodynamic properties of hot gas. We find that a relatively simple model is able to describe both sets of measurements and to make reasonably accurate predictions for other observables (the tSZ autocorrelation, its cross-correlation with x-rays, and tomographic measurements of the bias-weighted mean gas pressure). We show, however, that contamination from x-ray active galactic nuclei (AGN), as well as the impact of nonthermal pressure support, must be incorporated in order to fully resolve tensions in parameter space between different data combinations. Combining the tSZ and x-ray cross-correlations with cosmic shear we obtain simultaneous constraints on the mass scale at which half of the gas content has been expelled from the halo, log 10 M c = 14.8 3 − 0.23 + 0.16 , on the polytropic index of the gas, Γ = 1.14 4 − 0.013 + 0.016 , and on the ratio of the central gas temperature to the virial temperature α T = 1.3 0 − 0.28 + 0.15 , marginalizing over AGN contributions to the signal.
More details from the publisher
More details

The Simons Observatory: Assessing the Impact of Dust Complexity on the Recovery of Primordial $B$-modes

(2025)

Authors:

Yiqi Liu, Susanna Azzoni, Susan E Clark, Brandon S Hensley, Là O Vacher, David Alonso, Carlo Baccigalupi, Michael L Brown, Alessandro Carones, Jens Chluba, Jo Dunkley, Carlos Hervías-Caimapo, Bradley R Johnson, Nicoletta Krachmalnicoff, Giuseppe Puglisi, Mathieu Remazeilles, Kevin Wolz

The Atacama Cosmology Telescope: High-redshift measurement of structure growth from the cross-correlation of Quaia quasars and CMB lensing from ACT DR6 and $\textit{Planck}$ PR4

(2025)

Authors:

Carmen Embil Villagra, Gerrit Farren, Giulio Fabbian, Boris Bolliet, Irene Abril-Cabezas, David Alonso, Anthony Challinor, Jo Dunkley, Joshua Kim, Niall MacCrann, Fiona McCarthy, Kavilan Moodley, Frank J Qu, Blake Sherwin, Cristobal Sifon, Alexander van Engelen, Edward J Wollack

The Simons Observatory: validation of reconstructed power spectra from simulated filtered maps for the small aperture telescope survey

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:06 (2025) 055

Authors:

Carlos Hervías-Caimapo, Kevin Wolz, Adrien La Posta, Susanna Azzoni, David Alonso, Kam Arnold, Carlo Baccigalupi, Simon Biquard, Michael L Brown, Erminia Calabrese, Yuji Chinone, Samuel Day-Weiss, Jo Dunkley, Rolando Dünner, Josquin Errard, Giulio Fabbian, Ken Ganga, Serena Giardiello, Emilie Hertig, Kevin M Huffenberger, Bradley R Johnson, Baptiste Jost, Reijo Keskitalo, Theodore S Kisner

Abstract:

We present a transfer function-based method to estimate angular power spectra from filtered maps for cosmic microwave background (CMB) surveys. This is especially relevant for experiments targeting the faint primordial gravitational wave signatures in CMB polarisation at large scales, such as the Simons Observatory (SO) small aperture telescopes. While timestreams can be filtered to mitigate the contamination from low-frequency noise, usual methods that calculate the mode coupling at individual multipoles can be challenging for experiments covering large sky areas or reaching few-arcminute resolution. The method we present here, although approximate, is more practical and faster for larger data volumes. We validate it through the use of simulated observations approximating the first year of SO data, going from half-wave plate-modulated timestreams to maps, and using simulations to estimate the mixing of polarisation modes induced by an example of time-domain filtering. We show its performance through an example null test and with an end-to-end pipeline that performs inference on cosmological parameters, including the tensor-to-scalar ratio r. The performance demonstration uses simulated observations at multiple frequency bands. We find that the method can recover unbiased parameters for our simulated noise levels.
More details from the publisher
Details from ORA

The Atacama Cosmology Telescope: semi-analytic covariance matrices for the DR6 CMB power spectra

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:05 (2025) 015

Authors:

Zachary Atkins, Zack Li, David Alonso, J Richard Bond, Erminia Calabrese, Adriaan J Duivenvoorden, Jo Dunkley, Serena Giardiello, Carlos Hervías-Caimapo, J Colin Hill, Hidde T Jense, Joshua Kim, Thibaut Louis, Kavilan Moodley, Thomas W Morris, Sigurd Naess, Michael D Niemack, Lyman Page, Adrien La Posta, Cristóbal Sifón, Edward J Wollack

Abstract:

The Atacama Cosmology Telescope Data Release 6 (ACT DR6) power spectrum is expected to provide state-of-the-art cosmological constraints, with an associated need for precise error modeling. In this paper we design, and evaluate the performance of, an analytic covariance matrix prescription for the DR6 power spectrum that sufficiently accounts for the complicated ACT map properties. We use recent advances in the literature to handle sharp features in the signal and noise power spectra, and account for the effect of map-level anisotropies on the covariance matrix. In including inhomogeneous survey depth information, the resulting covariance matrix prescription is structurally similar to that used in the Planck Cosmic Microwave Background (CMB) analysis. We quantify the performance of our prescription using comparisons to Monte Carlo simulations, finding better than 3% agreement. This represents an improvement from a simpler, pre-existing prescription, which differs from simulations by ∼ 16%. We develop a new method to correct the analytic covariance matrix using simulations, after which both prescriptions achieve better than 1% agreement. This correction method outperforms a commonly used alternative, where the analytic correlation matrix is assumed to be accurate when correcting the covariance. Beyond its use for ACT, this framework should be applicable for future high resolution CMB experiments including the Simons Observatory (SO).
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet