kSZ for everyone: the pseudo-Cl approach to stacking
(2025)
The impact of galaxy bias on cross-correlation tomography
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2125
Abstract:
Abstract The cross-correlation of galaxies at different redshifts with other tracers of the large-scale structure can be used to reconstruct the cosmic mean of key physical quantities, and their evolution over billions of years, at high precision. However, a correct interpretation of these measurements must ensure that they are independent of the clustering properties of the galaxy sample used. In this paper we explore different prescriptions to extract tomographic reconstruction measurements and use the FLAMINGO hydrodynamic simulations to show that a robust estimator, independent of the small-scale galaxy bias, can be constructed. We focus on the tomographic reconstruction of the halo bias-weighted electron pressure 〈bPe〉 and star-formation density 〈bρSFR〉, which can be reconstructed from tomographic analysis of Sunyaev-Zel’dovich and cosmic infrared background maps, respectively. We show that these quantities can be reconstructed with an accuracy of 1-3% over a wide range of redshifts, using different galaxy samples. We also show that these measurements can be accurately interpreted using the halo model, assuming a sufficiently reliable model can be constructed for the halo mass function, large-scale halo bias, and for the dependence of the physical quantities being reconstructed on halo mass.Detailed theoretical modelling of the kinetic Sunyaev-Zel'dovich stacking power spectrum
(2025)
The Atacama Cosmology Telescope: DR6 constraints on extended cosmological models
Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:11 (2025) 063
Abstract:
We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model, ΛCDM, and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from the Planck mission. To break geometric degeneracies, we include ACT and Planck CMB lensing data and baryon acoustic oscillation data from DESI Year-1. To test the dependence of our results on non-ACT data, we also explore combinations replacing Planck with WMAP and DESI with BOSS, and further add supernovae measurements from Pantheon+ for models that affect the late-time expansion history. We verify the near-scale-invariance (running of the spectral index dns /d ln k = 0.0062 ± 0.0052) and adiabaticity of the primordial perturbations. Neutrino properties are consistent with Standard Model predictions: we find no evidence for new light, relativistic species that are free-streaming (N eff = 2.86 ± 0.13, which combined with astrophysical measurements of primordial helium and deuterium abundances becomes N eff = 2.89 ± 0.11), for non-zero neutrino masses (∑mν < 0.089 eV at 95% CL), or for neutrino self-interactions. We also find no evidence for self-interacting dark radiation (N idr < 0.134), or for early-universe variation of fundamental constants, including the fine-structure constant (α EM/α EM,0 = 1.0043 ± 0.0017) and the electron mass (me /me,0 = 1.0063 ± 0.0056). Our data are consistent with standard big bang nucleosynthesis (we find Yp = 0.2312 ± 0.0092), the COBE/FIRAS-inferred CMB temperature (we find T CMB = 2.698 ± 0.016 K), a dark matter component that is collisionless and with only a small fraction allowed as axion-like particles, a cosmological constant (w = -0.986 ± 0.025), and the late-time growth rate predicted by general relativity (γ = 0.663 ± 0.052). We find no statistically significant preference for a departure from the baseline ΛCDM model. In fits to models invoking early dark energy, primordial magnetic fields, or an arbitrary modified recombination history, we find H 0 = 69.9+0.8 -1.5, 69.1 ± 0.5, or 69.6 ± 1.0 km/s/Mpc, respectively; using BOSS instead of DESI BAO data reduces the central values of these constraints by 1–1.5 km/s/Mpc while only slightly increasing the error bars. In general, models introduced to increase the Hubble constant or to decrease the amplitude of density fluctuations inferred from the primary CMB are not favored over ΛCDM by our data.The Atacama Cosmology Telescope: DR6 maps
Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:11 (2025) 061