Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. David Alonso

Associate Professor of Cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
David.Alonso@physics.ox.ac.uk
Telephone: 01865 (2)288582
Denys Wilkinson Building, room 532B
  • About
  • Publications

Tomographic galaxy clustering with the Subaru Hyper Suprime-Cam first year public data release

Journal of Cosmology and Astroparticle Physics IOP Publishing

Authors:

Javier Sánchez, Anže Slosar, Humna Awan, Rachel Mandelbaum, Adam Broussard, Eric Gawiser, Zahra Gomes, Jo Dunkley, Jeffrey A Newman, Hironao Miyatake, Ignacio Sevilla, Sarah Skinner, Erica Wagoner, David Alonso, Andrina Nicola

Abstract:

We analyze the clustering of galaxies in the first public data release of the HSC Subaru Strategic Program. Despite the relatively small footprints of the observed fields, the data are an excellent proxy for the deep photometric datasets that will be acquired by LSST, and are therefore an ideal test bed for the analysis methods being implemented by the LSST DESC. We select a magnitude limited sample with $i<24.5$ and analyze it in four redshift bins covering $0.15\lesssim z \lesssim1.5$. We carry out a Fourier-space analysis of the two-point clustering of this sample, including all auto- and cross-correlations. We demonstrate the use of map-level deprojection methods to account for fluctuations in the galaxy number density caused by observational systematics. Through an HOD analysis, we place constraints on the characteristic halo masses of this sample, finding a good fit up to scales $k_{\rm max}=1\,{\rm Mpc}^{-1}$, including both auto- and cross-correlations. Our results show monotonically decreasing average halo masses, which can be interpreted in terms of the drop-out of red galaxies at high redshifts for a flux-limited sample. In terms of photometric redshift systematics, we show that additional care is needed in order to marginalize over uncertainties in the redshift distribution in galaxy clustering, and that these uncertainties can be constrained by including cross-correlations. We are able to make a $\sim3\sigma$ detection of lensing magnification in the HSC data. Our results are stable to variations in $\sigma_8$ and $\Omega_c$ and we find constraints that agree well with measurements from Planck and low-redshift probes. Finally, we use our pipeline to study the clustering of galaxies as a function of limiting flux, and provide a simple fitting function for the linear galaxy bias for magnitude limited samples as a function of limiting magnitude and redshift. [abridged]
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 47
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • Current page 55

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet