Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Arzhang's natural habitat

Prof Arzhang Ardavan

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
arzhang.ardavan@physics.ox.ac.uk
Telephone: 01865 (2)72366
Clarendon Laboratory, room 267
Personal website
  • About
  • Publications

Probing resonating valence bond states in artificial quantum magnets

Nature Communications Springer Nature 12 (2021) 993

Authors:

Kai Yang, Soo-Hyon Phark, Yujeong Bae, Taner Esat, Arzhang Ardavan, Philip Willke, Andreas Heinrich, Christopher Lutz

Abstract:

Designing and characterizing the many-body behaviors of quantum materials represents a prominent challenge for understanding strongly correlated physics and quantum information processing. We constructed artificial quantum magnets on a surface by using spin-1/2 atoms in a scanning tunneling microscope (STM). These coupled spins feature strong quantum fluctuations due to antiferromagnetic exchange interactions between neighboring atoms. To characterize the resulting collective magnetic states and their energy levels, we performed electron spin resonance on individual atoms within each quantum magnet. This gives atomic-scale access to properties of the exotic quantum many-body states, such as a finite-size realization of a resonating valence bond state. The tunable atomic-scale magnetic field from the STM tip allows us to further characterize and engineer the quantum states. These results open a new avenue to designing and exploring quantum magnets at the atomic scale for applications in spintronics and quantum simulations.
More details from the publisher
Details from ORA
More details
More details

Electron spin as fingerprint for charge generation and transport in doped organic semiconductors

Journal of Materials Chemistry C Royal Society of Chemistry 9:8 (2021) 2944-2954

Authors:

Alberto Privitera, Peregrine Warren, Giacomo Londi, Pascal Kaienburg, Junjie Liu, Andreas Sperlich, Andreas E Lauritzen, Oliver Thimm, Arzhang Ardavan, David Beljonne, Moritz Riede

Abstract:

We use the electron spin as a probe to gain insight into the mechanism of molecular doping in a p-doped zinc phthalocyanine host across a broad range of temperatures (80–280 K) and doping concentrations (0–5 wt% of F6-TCNNQ). Electron paramagnetic resonance (EPR) spectroscopy discloses the presence of two main paramagnetic species distinguished by two different g-tensors, which are assigned based on density functional theory calculations to the formation of a positive polaron on the host and a radical anion on the dopant. Close inspection of the EPR spectra shows that radical anions on the dopants couple in an antiferromagnetic manner at device-relevant doping concentrations, thereby suggesting the presence of dopant clustering, and that positive polarons on the molecular host move by polaron hopping with an activation energy of 5 meV. This activation energy is substantially smaller than that inferred from electrical conductivity measurements (∼233 meV), as the latter also includes a (major) contribution from charge-transfer state dissociation. It emerges from this study that probing the electron spin can provide rich information on the nature and dynamics of charge carriers generated upon doping molecular semiconductors, which could serve as a basis for the design of the next generation of dopant and host materials.
More details from the publisher
Details from ORA
More details

Avenue - Avelumab in the Frontline Treatment of Advanced Classic Hodgkin Lymphoma - a Window Study

BLOOD 138 (2021)

Authors:

Stephen Booth, Eliza Hawkes, Amy A Kirkwood, Sally F Barrington, Patrick G Medd, Pamela McKay, Ruth Pettengell, Sunil Iyengar, Fiona Miall, John Radford, Cathy Burton, Amit Sud, Nimish Shah, Andrew M Scott, Arzhang Ardavan, Michael Northend, Laura Clifton-Hadley, Richard Jenner, Graham P Collins
More details from the publisher

Universal limiting transition temperature for the high $T_\mathrm{c}$ superconductors

(2020)

Authors:

Moon-Sun Nam, Arzhang Ardavan
More details from the publisher

Photo-molecular high temperature superconductivity

Physical Review X American Physical Society 10 (2020) 031028

Authors:

M Buzzi, D Nicoletti, M Fechner, N Tancogne-Dejean, MA Sentef, A Georges, T Biesner, E Uykur, M Dressel, A Henderson, T Siegrist, JA Schlueter, K Miyagawa, K Kanoda, M-S Nam, Arzhang Ardavan, Jonathan Coulthard, Joseph Tindall, Frank Schlawin, Dieter Jaksch, Andrea Cavalleri

Abstract:

The properties of organic conductors are often tuned by the application of chemical or external pressure, which change orbital overlaps and electronic bandwidths while leaving the molecular building blocks virtually unperturbed. Here, we show that, unlike any other method, light can be used to manipulate the local electronic properties at the molecular sites, giving rise to new emergent properties. Targeted molecular excitations in the charge-transfer salt κ−(BEDT−TTF)2 Cu[N(CN)2] Br induce a colossal increase in carrier mobility and the opening of a superconducting optical gap. Both features track the density of quasiparticles of the equilibrium metal and can be observed up to a characteristic coherence temperature T∗≃50K, far higher than the equilibrium transition temperature TC=12.5K. Notably, the large optical gap achieved by photoexcitation is not observed in the equilibrium superconductor, pointing to a light-induced state that is different from that obtained by cooling. First-principles calculations and model Hamiltonian dynamics predict a transient state with long-range pairing correlations, providing a possible physical scenario for photomolecular superconductivity.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet