Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Arzhang's natural habitat

Prof Arzhang Ardavan

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
arzhang.ardavan@physics.ox.ac.uk
Telephone: 01865 (2)72366
Clarendon Laboratory, room 267
Personal website
  • About
  • Publications

Inherent Spin–Polarization Coupling in a Magnetoelectric Vortex

Nano Letters American Chemical Society (ACS) 22:10 (2022) 3976-3982

Authors:

Sujit Das, Valentyn Laguta, Katherine Inzani, Weichuan Huang, Junjie Liu, Ruchira Chatterjee, Margaret R McCarter, Sandhya Susarla, Arzhang Ardavan, Javier Junquera, Sinéad M Griffin, Ramamoorthy Ramesh
More details from the publisher
More details
More details

Quantum-Coherent Nanoscience

(2022)

Authors:

Andreas J Heinrich, William D Oliver, Lieven Vandersypen, Arzhang Ardavan, Roberta Sessoli, Daniel Loss, Ania Bleszynski Jayich, Joaquin Fernandez-Rossier, Arne Laucht, Andrea Morello
More details from the publisher
Details from ArXiV

Quantum-coherent nanoscience

Nature Nanotechnology Springer Nature 16:12 (2021) 1318-1329

Authors:

Andreas Heinrich, William Oliver, Lieven Vandersypen, Arzhang Ardavan, Roberta Sessoli, Daniel Loss, Ania Bleszynski Jayich, Joaquin Fernandez-Rossier, Arne Laucht, Andrea Morello

Abstract:

For the past three decades nanoscience has widely affected many areas in physics, chemistry and engineering, and has led to numerous fundamental discoveries, as well as applications and products. Concurrently, quantum science and technology has developed into a cross-disciplinary research endeavour connecting these same areas and holds burgeoning commercial promise. Although quantum physics dictates the behaviour of nanoscale objects, quantum coherence, which is central to quantum information, communication and sensing, has not played an explicit role in much of nanoscience. This Review describes fundamental principles and practical applications of quantum coherence in nanoscale systems, a research area we call quantum-coherent nanoscience. We structure this Review according to specific degrees of freedom that can be quantum-coherently controlled in a given nanoscale system, such as charge, spin, mechanical motion and photons. We review the current state of the art and focus on outstanding challenges and opportunities unlocked by the merging of nanoscience and coherent quantum operations.
More details from the publisher
Details from ORA
More details
More details

Avenue - Avelumab in the Frontline Treatment of Advanced Classic Hodgkin Lymphoma - a Window Study

Blood American Society of Hematology 138:Supplement 1 (2021) 2470

Authors:

Stephen Booth, Eliza Hawkes, Amy A Kirkwood, Sally F Barrington, Patrick G Medd, Pamela McKay, Ruth Pettengell, Sunil Iyengar, Fiona Miall, John Radford, Cathy Burton, Amit Sud, Nimish Shah, Andrew M Scott, Arzhang Ardavan, Michael Northend, Laura Clifton-Hadley, Richard Jenner, Graham P Collins
More details from the publisher

Phase diagram for light-induced superconductivity in κ−(ET)2−X

Physical Review Letters American Physical Society 127:19 (2021) 197002

Authors:

M Buzzi, D Nicoletti, S Fava, G Jotzu, K Miyagawa, K Kanoda, A Henderson, T Siegrist, Ja Schlueter, M-S Nam, A Ardavan, A Cavalleri

Abstract:

Resonant optical excitation of certain molecular vibrations in κ−(BEDT−TTF)2Cu[N(CN)2]Br has been shown to induce transient superconductinglike optical properties at temperatures far above equilibrium Tc. Here, we report experiments across the bandwidth-tuned phase diagram of this class of materials, and study the Mott insulator κ−(BEDT−TTF)2Cu[N(CN)2]Cl and the metallic compound κ−(BEDT−TTF)2Cu(NCS)2. We find nonequilibrium photoinduced superconductivity only in κ−(BEDT−TTF)2Cu[N(CN)2]Br, indicating that the proximity to the Mott insulating phase and possibly the presence of preexisting superconducting fluctuations are prerequisites for this effect.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet