Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Mustafa Bakr

Quantum Technology Research Fellow

Research theme

  • Quantum information and computation

Sub department

  • Condensed Matter Physics

Research groups

  • Superconducting quantum devices
mustafa.bakr@physics.ox.ac.uk
  • About
  • Publications

High Coherence in a Tileable 3D Integrated Superconducting Circuit Architecture

(2021)

Authors:

Peter A Spring, Shuxiang Cao, Takahiro Tsunoda, Giulio Campanaro, Simone D Fasciati, James Wills, Vivek Chidambaram, Boris Shteynas, Mustafa Bakr, Paul Gow, Lewis Carpenter, James Gates, Brian Vlastakis, Peter J Leek
More details from the publisher
Details from ArXiV

Improving dispersive readout of a superconducting qubit by machine learning on path signature

Authors:

Shuxiang Cao, Zhen Shao, Jian-Qing Zheng, Mustafa Bakr, Peter Leek, Terry Lyons

Abstract:

One major challenge that arises from quantum computing is to implement fast, high-accuracy quantum state readout. For superconducting circuits, this problem reduces to a time series classification problem on readout signals. We propose that using path signature methods to extract features can enhance existing techniques for quantum state discrimination. We demonstrate the superior performance of our proposed approach over conventional methods in distinguishing three different quantum states on real experimental data from a superconducting transmon qubit.
Details from ORA

Emulating two qubits with a four-level transmon qudit for variational quantum algorithms

Quantum Science and Technology IOP Publishing 9:3 (2024) 035003

Authors:

Shuxiang Cao, Mustafa Bakr, Giulio Campanaro, Simone D Fasciati, James Wills, Deep Lall, Boris Shteynas, Vivek Chidambaram, Ivan Rungger, Peter Leek

Abstract:

Using quantum systems with more than two levels, or qudits, can scale the computational space of quantum processors more efficiently than using qubits, which may offer an easier physical implementation for larger Hilbert spaces. However, individual qudits may exhibit larger noise, and algorithms designed for qubits require to be recompiled to qudit algorithms for execution. In this work, we implemented a two-qubit emulator using a 4-level superconducting transmon qudit for variational quantum algorithm applications and analyzed its noise model. The major source of error for the variational algorithm was readout misclassification error and amplitude damping. To improve the accuracy of the results, we applied error-mitigation techniques to reduce the effects of the misclassification and qudit decay event. The final predicted energy value is within the range of chemical accuracy.
More details from the publisher
Details from ORA
More details

Encoding optimization for quantum machine learning demonstrated on a superconducting transmon qutrit

(2023)

Authors:

Shuxiang Cao, Weixi Zhang, Jules Tilly, Abhishek Agarwal, Mustafa Bakr, Giulio Campanaro, Simone D Fasciati, James Wills, Boris Shteynas, Vivek Chidambaram, Peter Leek, Ivan Rungger
More details from the publisher
Details from ArXiV

Technological Investigation of Metal 3-D Printed Microwave Cavity Filters Based on Different Topologies and Materials

IEEE Transactions on Components Packaging and Manufacturing Technology Institute of Electrical and Electronics Engineers (IEEE) 12:12 (2022) 2027-2037

Authors:

Povilas Vaitukaitis, Kenneth Nai, Jiayu Rao, Mustafa S Bakr, Jiasheng Hong
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet