Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
A CHANDRA image of the supernova remnant Cas A superimposed on the Gemini laser at the UK Central Laser Facility

The plasma physics of supernova remnants in astrophysics is similar to plasma physics of solids irradiated with powerful lasers in the laboratory.

Credit: 1) The Royal Society (personal photo) 2) NASA/CXC/MIT/UMass Amherst/M.D.Stage et al. (Cas A) 3) STFC (laser)

Tony Bell FRS

Academic Visitor

Research theme

  • Particle astrophysics & cosmology
  • Plasma physics

Sub department

  • Atomic and Laser Physics
Tony.Bell@physics.ox.ac.uk
Telephone: 01865 (2)72210
Clarendon Laboratory, room 316.4
  • About
  • Publications

Pair plasma cushions in the hole-boring scenario

Plasma Physics and Controlled Fusion 55:9 (2013)

Authors:

JG Kirk, AR Bell, CP Ridgers

Abstract:

Pulses from a 10 PW laser are predicted to produce large numbers of gamma-rays and electron-positron pairs on hitting a solid target. However, a pair plasma, if it accumulates in front of the target, may partially shield it from the pulse. Using stationary, one-dimensional solutions of the two-fluid (electron-positron) and Maxwell equations, including a classical radiation reaction term, we examine this effect in the hole-boring scenario. We find the collective effects of a pair plasma 'cushion' substantially reduce the reflectivity, converting the absorbed flux into high-energy gamma-rays. There is also a modest increase in the laser intensity needed to achieve threshold for a non-linear pair cascade. © 2013 IOP Publishing Ltd.
More details from the publisher
More details

Dense electron-positron plasmas generated by 10PW lasers in the QED-plasma regime

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 8780 (2013) 87801j-87801j-6

Authors:

CP Ridgers, CS Brady, JG Kirk, T Blackburn, TD Arber, AR Bell
More details from the publisher
More details

Cosmic-ray acceleration and escape from supernova remnants

Monthly Notices of the Royal Astronomical Society 431:1 (2013) 415-429

Authors:

AR Bell, KM Schure, B Reville, G Giacinti

Abstract:

Galactic cosmic-ray (CR) acceleration to the knee in the spectrum at a few PeV is only possible if the magnetic field ahead of a supernova remnant (SNR) shock is strongly amplified by CRs escaping the SNR. A model formulated in terms of the electric charge carried by escaping CRs predicts the maximum CR energy and the energy spectrum of CRs released into the surrounding medium. We find that historical SNRs such as Cas A, Tycho and Kepler may be expanding too slowly to accelerate CRs to the knee at the present time. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
More details from the publisher
More details

Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas

Physics of Plasmas 20:5 (2013)

Authors:

CP Ridgers, CS Brady, R Duclous, JG Kirk, K Bennett, TD Arber, AR Bell

Abstract:

In simulations of a 12.5 PW laser (focussed intensity I = 4 × 10 23 Wcm - 2) striking a solid aluminum target, 10% of the laser energy is converted to gamma-rays. A dense electron-positron plasma is generated with a maximum density of 10 26 m - 3, seven orders of magnitude denser than pure e- e+ plasmas generated with 1PW lasers. When the laser power is increased to 320 PW (I = 10 25 Wcm - 2), 40% of the laser energy is converted to gamma-ray photons and 10% to electron-positron pairs. In both cases, there is strong feedback between the QED emission processes and the plasma physics, the defining feature of the new "QED-plasma" regime reached in these interactions. © 2013 AIP Publishing LLC.
More details from the publisher
More details

Universal behaviour of shock precursors in the presence of efficient cosmic ray acceleration

Monthly Notices of the Royal Astronomical Society 430 (2013) 2873

Authors:

B Reville, AR Bell
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet