Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Port Meadow flooded, February 2021

Professor Richard Berry D. Phil.

Professor of Biological Physics

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Oxford Molecular Motors
Richard.Berry@physics.ox.ac.uk
Telephone: 01865 (2)72288,01865 (2)71723
Clarendon Laboratory, room 273B
  • About
  • Links
  • Publications

Signal-dependent turnover of the bacterial flagellar switch protein FliM

Proceedings of the National Academy of Sciences of the United States of America 107:25 (2010) 11347-11351

Authors:

NJ Delalez, GH Wadhams, G Rosser, Q Xue, MT Brown, IM Dobbie, RM Berry, MC Leake, JP Armitage

Abstract:

Most biological processes are performed by multiprotein complexes. Traditionally described as static entities, evidence is now emerging that their components can be highly dynamic, exchanging constantly with cellular pools. The bacterial flagellar motor contains ∼13 different proteins and provides an ideal system to study functional molecular complexes. It is powered by transmembrane ion flux through a ring of stator complexes that push on a central rotor. The Escherichia coli motor switches direction stochastically in response to binding of the response regulator CheY to the rotor switch component FliM. Much is known of the static motor structure, but we are just beginning to understand the dynamics of its individual components. Here we measure the stoichiometry and turnover of FliM in functioning flagellar motors, by using high-resolution fluorescence microscopy of E. coli expressing genomically encoded YPet derivatives of FliM at physiological levels. We show that the ∼30 FliM molecules per motor exist in two discrete populations, one tightly associated with the motor and the other undergoing stochastic turnover. This turnover of FliM molecules depends on the presence of active CheY, suggesting a potential role in the process of motor switching. In many ways the bacterial flagellar motor is as an archetype macromolecular assembly, and our results may have further implications for the functional relevance of protein turnover in other large molecular complexes.
More details from the publisher

Steps and bumps: precision extraction of discrete states of molecular machines using physically-based, high-throughput time series analysis

(2010)

Authors:

Max A Little, Bradley C Steel, Fan Bai, Yoshiyuki Sowa, Thomas Bilyard, David M Mueller, Richard M Berry, Nick S Jones
More details from the publisher

Time for bacteria to slow down.

Cell 141:1 (2010) 24-26

Authors:

Judith P Armitage, Richard M Berry

Abstract:

The speed of the bacterial flagellar motor is thought to be regulated by structural changes in the motor. Two new studies, Boehm et al. (2010) in this issue and Paul et al. (2010) in Molecular Cell, now show that cyclic di-GMP also regulates flagellar motor speed through interactions between the cyclic di-GMP binding protein YcgR and the motor proteins.
More details from the publisher
More details

Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch.

Science 327:5966 (2010) 685-689

Authors:

Fan Bai, Richard W Branch, Dan V Nicolau, Teuta Pilizota, Bradley C Steel, Philip K Maini, Richard M Berry

Abstract:

The bacterial flagellar switch that controls the direction of flagellar rotation during chemotaxis has a highly cooperative response. This has previously been understood in terms of the classic two-state, concerted model of allosteric regulation. Here, we used high-resolution optical microscopy to observe switching of single motors and uncover the stochastic multistate nature of the switch. Our observations are in detailed quantitative agreement with a recent general model of allosteric cooperativity that exhibits conformational spread--the stochastic growth and shrinkage of domains of adjacent subunits sharing a particular conformational state. We expect that conformational spread will be important in explaining cooperativity in other large signaling complexes.
More details from the publisher
More details

Time for Bacteria to Slow down

Cell 141:1 (2010) 24-26

Authors:

JP Armitage, RM Berry

Abstract:

The speed of the bacterial flagellar motor is thought to be regulated by structural changes in the motor. Two new studies, Boehm et al. (2010) in this issue and Paul et al. (2010) in Molecular Cell, now show that cyclic di-GMP also regulates flagellar motor speed through interactions between the cyclic di-GMP binding protein YcgR and the motor proteins. © 2010 Elsevier Inc.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet