Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Port Meadow flooded, February 2021

Professor Richard Berry D. Phil.

Professor of Biological Physics

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Oxford Molecular Motors
Richard.Berry@physics.ox.ac.uk
Telephone: 01865 (2)72288,01865 (2)71723
Clarendon Laboratory, room 273B
  • About
  • Links
  • Publications

8.4 The Rotary Bacterial Flagellar Motor

Chapter in Comprehensive Biophysics, Elsevier (2012) 50-71

Authors:

Y Sowa, RM Berry
More details from the publisher

Steps and bumps: Precision extraction of discrete states of molecular machines

Biophysical Journal 101:2 (2011) 477-485

Authors:

MA Little, BC Steel, F Bai, Y Sowa, T Bilyard, DM Mueller, RM Berry, NS Jones

Abstract:

We report statistical time-series analysis tools providing improvements in the rapid, precision extraction of discrete state dynamics from time traces of experimental observations of molecular machines. By building physical knowledge and statistical innovations into analysis tools, we provide techniques for estimating discrete state transitions buried in highly correlated molecular noise. We demonstrate the effectiveness of our approach on simulated and real examples of steplike rotation of the bacterial flagellar motor and the F1-ATPase enzyme. We show that our method can clearly identify molecular steps, periodicities and cascaded processes that are too weak for existing algorithms to detect, and can do so much faster than existing algorithms. Our techniques represent a step in the direction toward automated analysis of high-sample-rate, molecular-machine dynamics. Modular, open-source software that implements these techniques is provided. © 2011 Biophysical Society.
More details from the publisher

Steps and bumps: precision extraction of discrete states of molecular machines.

Biophys J 101:2 (2011) 477-485

Authors:

Max A Little, Bradley C Steel, Fan Bai, Yoshiyuki Sowa, Thomas Bilyard, David M Mueller, Richard M Berry, Nick S Jones

Abstract:

We report statistical time-series analysis tools providing improvements in the rapid, precision extraction of discrete state dynamics from time traces of experimental observations of molecular machines. By building physical knowledge and statistical innovations into analysis tools, we provide techniques for estimating discrete state transitions buried in highly correlated molecular noise. We demonstrate the effectiveness of our approach on simulated and real examples of steplike rotation of the bacterial flagellar motor and the F1-ATPase enzyme. We show that our method can clearly identify molecular steps, periodicities and cascaded processes that are too weak for existing algorithms to detect, and can do so much faster than existing algorithms. Our techniques represent a step in the direction toward automated analysis of high-sample-rate, molecular-machine dynamics. Modular, open-source software that implements these techniques is provided.
More details from the publisher
More details

Two methods of temperature control for single-molecule measurements.

Eur Biophys J 40:5 (2011) 651-660

Authors:

Matthew AB Baker, Yuichi Inoue, Kuniaki Takeda, Akihiko Ishijima, Richard M Berry

Abstract:

Modern single-molecule biophysical experiments require high numerical aperture oil-immersion objectives in close contact with the sample. We introduce two methods of high numerical aperture temperature control which can be implemented on any microscope: objective temperature control using a ring-shaped Peltier device, and stage temperature control using a fluid flow cooling chip in close thermal contact with the sample. We demonstrate the efficacy of each system by showing the change in speed with temperature of two molecular motors, the bacterial flagellar motor and skeletal muscle myosin.
More details from the publisher
More details

Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force

Proceedings of the National Academy of Sciences of the United States of America 108:6 (2011) 2498-2503

Authors:

B Nan, J Chen, JC Neu, RM Berry, G Oster, DR Zusman

Abstract:

Myxococcus xanthus is a Gram-negative bacterium that glides over surfaces without the aid of flagella. Two motility systems are used for locomotion: social-motility, powered by the retraction of type IV pili, and adventurous (A)-motility, powered by unknown mechanism(s). We have shown that AgmU, an A-motility protein, is part of a multiprotein complex that spans the inner membrane and periplasm of M. xanthus. In this paper, we present evidence that periplasmic AgmU decorates a looped continuous helix that rotates clockwise as cells glide forward, reversing its rotation when cells reverse polarity. Inhibitor studies showed that the AgmU helix rotation is driven by proton motive force (PMF) and depends on actin-like MreB cytoskeletal filaments. The AgmU motility complex was found to interact with MotAB homologs. Our data are consistent with a mechanochemical model in which PMF-driven motors, similar to bacterial flagella stator complexes, run along an endless looped helical track, driving rotation of the track; deformation of the cell surface by the AgmU-associated proteins creates pressure waves in the slime, pushing cells forward.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet