Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Professor James Binney FRS

Emeritus Professor

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
James.Binney@physics.ox.ac.uk
Telephone: 01865 (2)73979
Rudolf Peierls Centre for Theoretical Physics, room 50.3
  • About
  • Publications

Bringing the Galaxy's dark halo to life

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 451:1 (2015) 639-650

Authors:

T Piffl, Z Penoyre, J Binney
More details from the publisher
Details from ArXiV

SELF-GRAVITY, RESONANCES AND ORBITAL DIFFUSION IN STELLAR DISKS

The Astrophysical Journal American Astronomical Society 806:1 (2015) 117

Authors:

Jean-Baptiste Fouvry, James Binney, Christophe Pichon
More details from the publisher

Extended distribution functions for our Galaxy

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 449:4 (2015) 3479-3502

Authors:

Jason L Sanders, James Binney
More details from the publisher
Details from ArXiV

Gas flow in barred potentials

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 449:3 (2015) 2421-2435

Authors:

Mattia C Sormani, James Binney, John Magorrian
More details from the publisher

The quiescent phase of galactic disc growth

Monthly Notices of the Royal Astronomical Society Oxford University Press (2015)

Authors:

Michael Aumer, James Binney, Ralph Schönrich

Abstract:

We perform a series of controlled N-body simulations of growing disc galaxies within non-growing, live dark matter haloes of varying mass and concentration. Our initial conditions include either a low-mass disc or a compact bulge. New stellar particles are continuously added on near-circular orbits to the existing disc, so spiral structure is continuously excited. To study the effect of combined spiral and giant molecular cloud (GMC) heating on the discs, we introduce massive, short-lived particles that sample a GMC mass function. An isothermal gas component is introduced for a subset of the models. We perform a resolution study and vary parameters governing the GMC population, the histories of star formation and radial scale growth. Models with GMCs and standard values for the disc mass and halo density provide the right level of self-gravity to explain the age–velocity dispersion relation of the solar neighbourhood (Snhd). GMC heating generates remarkably exponential vertical profiles with scaleheights that are radially constant and agree with observations of galactic thin discs. GMCs are also capable of significantly delaying bar formation. The amount of spiral-induced radial migration agrees with what is required for the metallicity distribution of the Snhd. However, in our standard models, the outward-migrating populations are not hot enough vertically to create thick discs. Thick discs can form in models with high baryon fractions, but the corresponding bars are too long, the young stellar populations too hot and the discs flare considerably.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet