Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Professor James Binney FRS

Emeritus Professor

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
James.Binney@physics.ox.ac.uk
Telephone: 01865 (2)73979
Rudolf Peierls Centre for Theoretical Physics, room 50.3
  • About
  • Publications

Supernova-driven gas accretion in the Milky Way

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 419:2 (2012) 1107-1120

Authors:

A Marasco, F Fraternali, JJ Binney
More details from the publisher

The properties of the local spiral arms from RAVE data: two-dimensional density wave approach

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 425:3 (2012) 2335-2342

Authors:

A Siebert, B Famaey, J Binney, B Burnett, C Faure, I Minchev, MEK Williams, O Bienayme, J Bland-Hawthorn, C Boeche, BK Gibson, EK Grebel, A Helmi, A Just, U Munari, JF Navarro, QA Parker, WA Reid, G Seabroke, A Siviero, M Steinmetz, T Zwitter
More details from the publisher

Galactic dynamics: Second Edition

, 2011

Authors:

J Binney, S Tremaine

Abstract:

Since it was first published in 1987,Galactic Dynamicshas become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, makingGalactic Dynamicsthe most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers.Every part of the book has been thoroughly overhauled, and many sections have been completely rewritten. Many new topics are covered, including N-body simulation methods, black holes in stellar systems, linear stability and response theory, and galaxy formation in the cosmological context. Binney and Tremaine, two of the world's leading astrophysicists, use the tools of theoretical physics to describe how galaxies and other stellar systems work, succinctly and lucidly explaining theoretical principles and their applications to observational phenomena. They provide readers with an understanding of stellar dynamics at the level needed to reach the frontiers of the subject.This new edition of the classic text is the definitive introduction to the field.A complete revision and update of one of the most cited references in astrophysicsProvides a comprehensive description of the dynamical structure and evolution of galaxies and other stellar systemsServes as both a graduate textbook and a resource for researchersIncludes 20 color illustrations, 205 figures, and more than 200 problemsCovers the gravitational N-body problem, hierarchical galaxy formation, galaxy mergers, dark matter, spiral structure, numerical simulations, orbits and chaos, equilibrium and stability of stellar systems, evolution of binary stars and star clusters, and much moreCompanion volume toGalactic Astronomy, the definitive book on the phenomenology of galaxies and star clusters. © 2008 by Princeton University Press. All Rights Reserved.

Distance determination for RAVE stars using stellar models III: The nature of the RAVE survey and Milky Way chemistry

ArXiv 1107.1256 (2011)

Authors:

B Burnett, J Binney, S Sharma, M Williams, T Zwitter, O Bienayme, J Bland-Hawthorn, KC Freeman, J Fulbright, B Gibson, G Gilmore, EK Grebel, A Helmi, U Munari, JF Navarro, QA Parker, GM Seabroke, A Siebert, A Siviero, M Steinmetz, FG Watson, RFG Wyse

Abstract:

We apply the method of Burnett & Binney (2010) for the determination of stellar distances and parameters to the internal catalogue of the Radial Velocity Experiment (Steinmetz et al. 2006). Subsamples of stars that either have Hipparcos parallaxes or belong to well-studied clusters, inspire confidence in the formal errors. Distances to dwarfs cooler than ~6000 K appear to be unbiased, but those to hotter dwarfs tend to be too small by ~10% of the formal errors. Distances to giants tend to be too large by about the same amount. The median distance error in the whole sample of 216,000 stars is 28% and the error distribution is similar for both giants and dwarfs. Roughly half the stars in the RAVE survey are giants. The giant fraction is largest at low latitudes and in directions towards the Galactic Centre. Near the plane the metallicity distribution is remarkably narrow and centred on [M/H]-0.04 dex; with increasing |z| it broadens out and its median moves to [M/H] ~ -0.5. Mean age as a function of distance from the Galactic centre and distance |z| from the Galactic plane shows the anticipated increase in mean age with |z|.
Details from ArXiV
More details from the publisher

Extracting science from surveys of our Galaxy

Pramana - Journal of Physics 77:1 (2011) 39-52

Abstract:

Our knowledge of the Galaxy is being revolutionized by a series of photometric, spectroscopic and astrometric surveys. Already an enormous body of data is available from completed surveys, and data of ever-increasing quality and richness will accrue at least until the end of this decade. To extract science from these surveys, we need a class of models that can give probability density functions in the space of the observables of a survey - we should not attempt to 'invert' the data from the space of observables into the physical space of the Galaxy. Currently just one class of model has the required capability, the so-called 'torus models'. A pilot application of torus models to understand the structure of the Galaxy's thin and thick discs has already produced two significant results: a major revision of our best estimate of the Sun's velocity with respect to the local standard of rest, and a successful prediction of the way in which the vertical velocity dispersion in the disc varies with distance from the Galactic plane. © Indian Academy of Sciences.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Current page 21
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet