The RAVE Survey: Rich in Very Metal-Poor Stars
ArXiv 1010.4491 (2010)
Abstract:
Very metal-poor stars are of obvious importance for many problems in chemical evolution, star formation, and galaxy evolution. Finding complete samples of such stars which are also bright enough to allow high-precision individual analyses is of considerable interest. We demonstrate here that stars with iron abundances [Fe/H] < -2 dex, and down to below -4 dex, can be efficiently identified within the Radial Velocity Experiment (RAVE) survey of bright stars, without requiring additional confirmatory observations. We determine a calibration of the equivalent width of the Calcium triplet lines measured from the RAVE spectra onto true [Fe/H], using high spectral resolution data for a subset of the stars. These RAVE iron abundances are accurate enough to obviate the need for confirmatory higher-resolution spectroscopy. Our initial study has identified 631 stars with [Fe/H] <= -2, from a RAVE database containing approximately 200,000 stars. This RAVE-based sample is complete for stars with [Fe/H] < -2.5, allowing statistical sample analysis. We identify three stars with [Fe/H] <= -4. Of these, one was already known to be `ultra metal-poor', one is a known carbon-enhanced metal-poor star, but we obtain [Fe/H]= -4.0, rather than the published [Fe/H]=-3.3, and derive [C/Fe] = +0.9, and [N/Fe] = +3.2, and the third is at the limit of our S/N. RAVE observations are on-going and should prove to be a rich source of bright, easily studied, very metal-poor stars.Origins of the thick disk as traced by the alpha elements of metal-poor giant stars selected from RAVE
Astrophysical Journal Letters 721:2 PART 2 (2010)
Abstract:
Theories of thick-disk formation can be differentiated by measurements of stellar elemental abundances. We have undertaken a study of metal-poor stars selected from the RAVE spectroscopic survey of bright stars to establish whether or not there is a significant population of metal-poor thick-disk stars ([Fe/H] ≲ -1.0) and to measure their elemental abundances. In this Letter, we present abundances of four α-elements (Mg, Si, Ca, and Ti) and iron for a subsample of 212 red giant branch and 31 red clump/horizontal branch stars from this study. We find that the [α/Fe] ratios are enhanced, implying that enrichment proceeded by purely core-collapse supernovae. This requires that star formation in each star-forming region had a short duration. The relative lack of scatter in the [α/Fe] ratios implies good mixing in the interstellar medium prior to star formation. In addition, the ratios resemble that of the halo, indicating that the halo and thick disk share a similar massive star initial mass function. We conclude that the α-enhancement of the metal-poor thick disk implies that direct accretion of stars from dwarf galaxies similar to surviving dwarf galaxies today did not play a major role in the formation of the thick disk. © 2010 The American Astronomical Society. All rights reserved.Searching for an Intermediate Mass Black Hole in the Blue Compact Dwarf galaxy MRK 996
ArXiv 1009.5382 (2010)
Abstract:
The possibility is explored that accretion on an intermediate mass black hole contributes to the ionisation of the interstellar medium of the Compact Blue Dwarf galaxy MRK996. Chandra observations set tight upper limits (99.7 per cent confidence level) in both the X-ray luminosity of the posited AGN, Lx(2-10keV)<3e40erg/s, and the black hole mass, <1e4/\lambda Msolar, where \lambda, is the Eddington ratio. The X-ray luminosity upper limit is insufficient to explain the high ionisation line [OIV]25.89\mu m, which is observed in the mid-infrared spectrum of the MRK996 and is proposed as evidence for AGN activity. This indicates that shocks associated with supernovae explosions and winds of young stars must be responsible for this line. It is also found that the properties of the diffuse X-ray emission of MRK996 are consistent with this scenario, thereby providing direct evidence for shocks that heat the galaxy's interstellar medium and contribute to its ionisation.Testing formation mechanisms of the Milky Way's thick disc with RAVE
ArXiv 1009.2052 (2010)
Abstract:
We study the eccentricity distribution of a thick disc sample of stars observed in the Radial Velocity Experiment (RAVE) and compare it to that expected in four simulations of thick disc formation in the literature (accretion of satellites, heating of a primordial thin disc during a merger, radial migration, and gas-rich mergers), as compiled by Sales et al. (2009). We find that the distribution of our sample is peaked at low eccentricities and falls off smoothly and rather steeply to high eccentricities. This distribution is fairly robust to changes in distances, thin disc contamination, and the particular thick disc sample used. Our results are inconsistent with what is expected for the pure accretion simulation, since we find that the dynamics of local thick disc stars implies that the majority must have formed "in situ". Of the remaining models explored, the eccentricity distribution of our stars appears to be most consistent with the gas-rich merger case.A search for new members of the beta Pic, Tuc-Hor and epsilon Cha moving groups in the RAVE database
ArXiv 1009.1356 (2010)