Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Professor James Binney FRS

Emeritus Professor

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
James.Binney@physics.ox.ac.uk
Telephone: 01865 (2)73979
Rudolf Peierls Centre for Theoretical Physics, room 50.3
  • About
  • Publications

Numerical estimation of densities

ArXiv astro-ph/0409233 (2004)

Authors:

Y Ascasibar, J Binney

Abstract:

[Abridged] We present a novel technique, dubbed FiEstAS, to estimate the underlying density field from a discrete set of sample points in an arbitrary multidimensional space. FiEstAS assigns a volume to each point by means of a binary tree. Density is then computed by integrating over an adaptive kernel. As a first test, we construct several Monte Carlo realizations of a Hernquist profile and recover the particle density in both real and phase space. At a given point, Poisson noise causes the unsmoothed estimates to fluctuate by a factor ~2 regardless of the number of particles. This spread can be reduced to about 1 dex (~26 per cent) by our smoothing procedure. [...] We conclude that our algorithm accurately measure the phase-space density up to the limit where discreteness effects render the simulation itself unreliable. Computationally, FiEstAS is orders of magnitude faster than the method based on Delaunay tessellation that Arad et al. employed, making it practicable to recover smoothed density estimates for sets of 10^9 points in 6 dimensions.
Details from ArXiV
More details from the publisher

Nuclear properties of a sample of nearby spiral galaxies from Hubble Space Telescope STIS imaging

Astronomical Journal 128:3 1785 (2004) 1124-1137

Authors:

C Scarlata, M Stiavelli, MA Hughes, D Axon, A Alonso-Herrero, J Atkinson, D Batcheldor, J Binney, A Capetti, CM Carollo, L Dressel, J Gerssen, D Macchetto, W Maciejewski, A Marconi, M Merrifield, M Ruiz, W Sparks, Z Tsvetanov, RP Van Der Marel

Abstract:

We present surface photometry for the central regions of a sample of 48 spiral galaxies (mostly unbarred and barred of type Sbc or Sc) observed with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. Surface brightness profiles (SBPs) were derived and modeled with a Nuker law. We also analyzed archival Wide Field Planetary Camera 2 images with a larger field of view, which are available for 18 galaxies in our sample. We modeled the extracted bulge SBPs with an exponential, an r1/4, or an r n profile. In agreement with previous studies, we find that bulges of Sbc galaxies fall into two categories: bulges well described by an exponential profile and those well described by an r1/4 profile. Only one galaxy requires the use of a more general Sérsic profile to properly describe the bulge. Nuclear photometrically distinct components are found in ∼55% of the galaxies. For those that we classify as star clusters on the basis of their resolved extent, we find absolute magnitudes that are brighter on average than those previously identified in spiral galaxies. This might be due to a bias in our sample toward star-forming galaxies, combined with a trend for star-forming galaxies to host brighter central clusters.
More details from the publisher

Nuclear properties of a sample of nearby spirals from STIS imaging

ArXiv astro-ph/0408435 (2004)

Authors:

C Scarlata, M Stiavelli, M Hughes, D Axon, A Alonso-Herrero, J Atkinson, D Batcheldor, J Binney, A Capetti, M Carollo, L Dressel, J Gerssen, D Macchetto, W Maciejewski, A Marconi, M Merrifield, M Ruiz, W Sparks, Z Tsvetanov, R van der Marel

Abstract:

We present surface photometry for the central regions of a sample of 48 spiral galaxies (mostly unbarred and barred of types Sbc or Sc) observed with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. Surface brightness profiles were derived and modeled with a Nuker law. We also analyzed archival Wide Field Planetary Camera~2 images with a larger field of view, available for 18 galaxies in our sample. We modeled the extracted bulge surface brightness profiles with an exponential, a de Vaucouleurs or a Sersic profile. In agreement with previous studies, we find that bulges of Sbc galaxies fall into two categories: bulges well described by an exponential profile and those well described by an de Vaucouleurs profile. Only one galaxy requires the use of a more general Sersic profile to properly describe the bulge. Nuclear photometrically distinct components are found in ~55% of the galaxies. For those that we classify as star clusters based on their resolved extent we find absolute magnitudes that are brighter on average than those previously identified in spiral galaxies. This might be due to a bias in our sample toward star forming galaxies, combined with a trend for star forming galaxies to host brighter central clusters.
Details from ArXiV
More details from the publisher
More details

Two-body relaxation in modified Newtonian dynamics

Monthly Notices of the Royal Astronomical Society 351:1 (2004) 285-291

Authors:

L Ciotti, J Binney

Abstract:

A naive extension to modified Newtonian dynamics (MOND) of the standard computation of the two-body relaxation time t2b implies that 2b is comparable to the crossing time regardless of the number W of stars in the system. This computation is questionable in view of the non-linearity of MOND's field equation. A non-standard approach to the calculation of t2b is developed that can be extended to MOND whenever discreteness noise generates force fluctuations that are small compared to the mean-field force. It is shown that this approach yields standard Newtonian results for systems in which the mean density profile is either plane-parallel or spherical. In the plane-parallel case, we find that in the deep-MOND regime t2b scales with N as in the Newtonian case, but is shorter by the square of the factor by which MOND enhances the gravitational force over its Newtonian value for the same system. Near the centre of a spherical system that is in the deep-MOND regime, we show that the fluctuating component of the gravitational force is never small compared to the mean-field force; this conclusion surprisingly even applies to systems with a density cusp that keeps the mean-field force constant to arbitrarily small radius, and suggests that a cuspy centre can never be in the deep-MOND regime. Application of these results to dwarf galaxies and groups and clusters of galaxies reveals that in MOND luminosity segregation should be far advanced in groups and clusters of galaxies, two-body relaxation should have substantially modified the density profiles of galaxy groups, while objects with masses in excess of ∼10 M⊙ should have spiralled to the centres of dwarf galaxies.
More details from the publisher
More details

Two-body relaxation in modified Newtonian dynamics

ArXiv astro-ph/0403020 (2004)

Authors:

L Ciotti, J Binney

Abstract:

A naive extension to MOND of the standard computation of the two-body relaxation time Tb implies that Tb is comparable to the crossing time regardless of the number N of stars in the system. This computation is questionable in view of the non-linearity of MOND's field equation. A non-standard approach to the calculation of Tb is developed that can be extended to MOND whenever discreteness noise generates force fluctuations that are small compared to the mean-field force. It is shown that this approach yields standard Newtonian results for systems in which the mean density profile is either plane-parallel or spherical. In the plane-parallel case we find that in the deep-MOND regime Tbb scales with N as in the Newtonian case, but is shorter by the square of the factor by which MOND enhances the gravitational force over its Newtonian value for the same system. Application of these results to dwarf galaxies and groups and clusters of galaxies reveals that in MOND luminosity segregation should be far advanced in groups and clusters of galaxies, two body relaxation should have substantially modified the density profiles of galaxy groups, while objects with masses in excess of ~10M_sun should have spiralled to the centres of dwarf galaxies.(Abridged)
Details from ArXiV
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • Current page 46
  • Page 47
  • Page 48
  • Page 49
  • Page 50
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet