Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Dr Jacob Blackmore

EPSRC Fellow

Research theme

  • Quantum information and computation
  • Quantum optics & ultra-cold matter

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
jacob.blackmore@physics.ox.ac.uk
  • About
  • Publications

Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs

Quantum Science and Technology IOP Publishing 4:1 (2018) 014010

Authors:

JA Blackmore, L Caldwell, PD Gregory, EM Bridge, R Sawant, J Aldegunde, Jordi Mur Petit, Dieter Jaksch, JM Hutson, BE Sauer, SL Cornish

Abstract:

Polar molecules offer a new platform for quantum simulation of systems with long-range interactions, based on the electrostatic interaction between their electric dipole moments. Here, we report the development of coherent quantum state control using microwave fields in $^{40}$Ca$^{19}$F and $^{87}$Rb$^{133}$Cs molecules, a crucial ingredient for many quantum simulation applications. We perform Ramsey interferometry measurements with fringe spacings of $\sim 1~\rm kHz$ and investigate the dephasing time of a superposition of $N=0$ and $N=1$ rotational states when the molecules are confined. For both molecules, we show that a judicious choice of molecular hyperfine states minimises the impact of spatially varying transition-frequency shifts across the trap. For magnetically trapped $^{40}$Ca$^{19}$F we use a magnetically insensitive transition and observe a coherence time of 0.61(3)~ms. For optically trapped $^{87}$Rb$^{133}$Cs we exploit an avoided crossing in the AC Stark shifts and observe a maximum coherence time of 0.75(6)~ms.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs

(2018)

Authors:

Jacob A Blackmore, Luke Caldwell, Philip D Gregory, Elizabeth M Bridge, Rahul Sawant, Jesus Aldegunde, Jordi Mur-Petit, Dieter Jaksch, Jeremy M Hutson, BE Sauer, MR Tarbutt, Simon L Cornish
More details from the publisher

ac Stark effect in ultracold polar Rb87Cs133 molecules

Physical Review A American Physical Society (APS) 96:2 (2017) 021402

Authors:

Philip D Gregory, Jacob A Blackmore, Jesus Aldegunde, Jeremy M Hutson, Simon L Cornish
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet