Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Test image

Katherine Blundell OBE

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Plasma physics

Sub department

  • Astrophysics

Research groups

  • Global Jet Watch
  • Pulsars, transients and relativistic astrophysics
Katherine.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)73308
Denys Wilkinson Building, room 707
www.GlobalJetWatch.net
orcid.org/0000-0001-8509-4939
  • About
  • Research
  • Gresham Professorship
  • Books
  • Teaching
  • Prizes
  • Publications

The Global Jet Watch

Radio image of the microquasar SS433
The micro quasar SS433
Link to the site

Multiwavelength study of Cygnus A IV. Proper motion and location of the nucleus

(2014)

Authors:

KC Steenbrugge, KM Blundell, S Pyrzas
More details from the publisher

X-ray emission around the z=4.1 radio galaxy TNJ1338-1942 and the potential role of far-infrared photons in AGN Feedback

ArXiv 1307.1594 (2013)

Authors:

Ian Smail, Katherine Blundell

Abstract:

We report the discovery in an 80-ks observation of spatially-extended X-ray emission around the high-redshift radio galaxy TNJ1388-1942 (z=4.11) with the Chandra X-ray Observatory. The X-ray emission extends over a ~30-kpc diameter region and although it is less extended than the GHz-radio lobes, it is roughly aligned with them. We suggest that the X-ray emission arises from Inverse Compton (IC) scattering of photons by relativistic electrons around the radio galaxy. At z=4.11 this is the highest redshift detection of IC emission around a radio galaxy. We investigate the hypothesis that in this compact source, the Cosmic Microwave Background (CMB), which is ~700x more intense than at z~0 is nonetheless not the relevant seed photon field for the bulk of the IC emission. Instead, we find a tentative correlation between the IC emission and far-infrared luminosities of compact, far-infrared luminous high-redshift radio galaxies (those with lobe lengths of <100kpc). Based on these results we suggest that in the earliest phases of the evolution of radio-loud AGN at very high redshift, the far-infrared photons from the co-eval dusty starbursts occuring within these systems may make a significant contribution to their IC X-ray emission and so contribute to the feedback in these massive high-redshift galaxies.
Details from ArXiV
More details from the publisher

X-ray emission around the z=4.1 radio galaxy TNJ1338-1942 and the potential role of far-infrared photons in AGN Feedback

(2013)

Authors:

Ian Smail, Katherine Blundell
More details from the publisher

Cosmological growth and feedback from supermassive black holes

ArXiv 1305.0286 (2013)

Authors:

P Mocz, Katherine M Blundell, AC Fabian

Abstract:

We develop a simple evolutionary scenario for the growth of supermassive black holes (BHs), assuming growth due to accretion only, to learn about the evolution of the BH mass function from $z=3$ to 0 and from it calculate the energy budgets of different modes of feedback. We tune the parameters of the model by matching the derived X-ray luminosity function (XLF) with the observed XLF of active galactic nuclei. We then calculate the amount of comoving kinetic and bolometric feedback as a function of redshift, derive a kinetic luminosity function and estimate the amount of kinetic feedback and $PdV$ work done by classical double Fanaroff-Riley II (FR II) radio sources. We also derive the radio luminosity function for FR IIs from our synthesized population and set constraints on jet duty cycles. Around 1/6 of the jet power from FR II sources goes into $PdV$ work done in the expanding lobes during the time the jet is on. Anti hierarchical growth of BHs is seen in our model due to addition of an amount of mass being accreted on to all BHs independent of the BH mass. The contribution to the total kinetic feedback by active galaxies in a low accretion, kinetically efficient mode is found to be the most significant at $z<1.5$. FR II feedback is found to be a significant mode of feedback above redshifts $z\sim 1.5$, which has not been highlighted by previous studies.
Details from ArXiV
More details from the publisher

Cosmological growth and feedback from supermassive black holes

(2013)

Authors:

P Mocz, Katherine M Blundell, AC Fabian
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet