Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Test image

Katherine Blundell OBE

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Plasma physics

Sub department

  • Astrophysics

Research groups

  • Global Jet Watch
  • Pulsars, transients and relativistic astrophysics
Katherine.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)73308
Denys Wilkinson Building, room 707
www.GlobalJetWatch.net
orcid.org/0000-0001-8509-4939
  • About
  • Research
  • Gresham Professorship
  • Books
  • Teaching
  • Prizes
  • Publications

The Global Jet Watch

Radio image of the microquasar SS433
The micro quasar SS433
Link to the site

The X-ray luminous cluster underlying the bright radio-quiet quasar H1821+643

(2009)

Authors:

HR Russell, AC Fabian, JS Sanders, RM Johnstone, KM Blundell, WN Brandt, CS Crawford
More details from the publisher

Inverse Compton X-rays from Giant Radio Galaxies at z~1

ArXiv 0909.4123 (2009)

Authors:

T Laskar, AC Fabian, KM Blundell, MC Erlund

Abstract:

We report XMM-Newton observations of three FR II radio galaxies at redshifts between 0.85 and 1.34, which show extended diffuse X-ray emission within the radio lobes, likely due to inverse-Compton up-scattering of the cosmic microwave background. Under this assumption, through spectrum-fitting together with archival VLA radio observations, we derive an independent estimate of the magnetic field in the radio lobes of 3C 469.1 and compare it with the equipartition value. We find concordance between these two estimates as long as the turnover in the energy distribution of the particles occurs at a Lorentz factor in excess of ~ 250. We determine the total energy in relativistic particles in the radio emitting lobes of all three sources to range between 3e59 and 8e59 erg. The nuclei of these X-ray sources are heavily-absorbed powerful AGN.
Details from ArXiV
More details from the publisher

Inverse Compton X-rays from Giant Radio Galaxies at z~1

(2009)

Authors:

T Laskar, AC Fabian, KM Blundell, MC Erlund
More details from the publisher

Multiwavelength study of Cygnus A III. Evidence for relic lobe plasma

ArXiv 0909.1073 (2009)

Authors:

KC Steenbrugge, I Heywood, KM Blundell

Abstract:

We study the particle energy distribution in the cocoon surrounding Cygnus A, using radio images between 151 MHz and 15 GHz and a 200 ks Chandra ACIS-I image. We show that the excess low frequency emission in the the lobe further from Earth cannot be explained by absorption or excess adiabatic expansion of the lobe or a combination of both. We show that this excess emission is consistent with emission from a relic counterlobe and a relic counterjet that are being re-energized by compression from the current lobe. We detect hints of a relic hotspot at the end of the relic X-ray jet in the more distant lobe. We do not detect relic emission in the lobe nearer to Earth as expected from light travel-time effects assuming intrinsic symmetry. We determine that the duration of the previous jet activity phase was slightly less than that of the current jet-active phase. Further, we explain some features observed at 5 and 15 GHz as due to the presence of a relic jet.
Details from ArXiV
More details from the publisher

Multiwavelength study of Cygnus A III. Evidence for relic lobe plasma

(2009)

Authors:

KC Steenbrugge, I Heywood, KM Blundell
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • Current page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet