Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Test image

Katherine Blundell OBE

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Plasma physics

Sub department

  • Astrophysics

Research groups

  • Global Jet Watch
  • Pulsars, transients and relativistic astrophysics
Katherine.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)73308
Denys Wilkinson Building, room 707
www.GlobalJetWatch.net
orcid.org/0000-0001-8509-4939
  • About
  • Research
  • Gresham Professorship
  • Books
  • Teaching
  • Prizes
  • Publications

The Global Jet Watch

Radio image of the microquasar SS433
The micro quasar SS433
Link to the site

The under-explored radio-loudness of quasars and the possibility of radio-source--environment interactions

ArXiv astro-ph/0306110 (2003)

Abstract:

I demonstrate that radio observations in the literature to date of optically-selected quasars are largely inadequate to reveal the full extent of their jet-activity. I discuss a recent example of an optically-powerful quasar, which is radio-quiet according to all the standard classifications, which Blundell & Rawlings discovered to have a >100 kpc jet, and show that other than being the first FRI quasar to be identified, there is no reason to presume it is exceptional. I also discuss a possible new probe of accounting for the interactions of radio sources with their environments. This tool could help to avoid over-estimating magnetic fields strengths within cluster gas. I briefly describe recent analyses by Rudnick & Blundell which confront claims in the literature of cluster gas B-fields > 10 micro-G.
Details from ArXiV
More details from the publisher

The under-explored radio-loudness of quasars and the possibility of radio-source--environment interactions

(2003)
More details from the publisher

Lowering inferred cluster magnetic field strengths: The radio galaxy contributions

Astrophysical Journal 588:1 I (2003) 143-154

Authors:

L Rudnick, KM Blundell

Abstract:

We present a detailed examination of the relationship between the magnetic field structures and the variations in Faraday rotation across PK.S 1246-410, a radio source in the Centaurus cluster of galaxies, using data from Taylor, Fabian, & Alien. We find a significant relationship between the intrinsic position angle of the polarization and the local amount of Faraday rotation. The most plausible explanation is that most or all of the rotation is local to the source. We suggest that the rotations local to cluster radio galaxies may result either from thermal material mixed with the radio plasma, or from thin skins of warm, ionized gas in pressure balance with the observed galaxy or hot cluster atmospheres. We find that the contribution of any unrelated cluster rotation measure (RM) variations on scales of 2″-10″ are less than 25 rad m-2 the standard, although model-dependent, derivation of cluster fields would then lead to an upper limit of ≈0.4μG on these scales. Inspection of the distributions of rotation measure, polarization angle, and total intensity in 3C 75, 3C 465, and Cygnus A also shows source-related Faraday effects in some locations. Many effects can mask the signatures of locally dominated RMs, so the detection of even isolated correlations can be important, although difficult to quantify statistically. In order to use radio sources such as those shown here to derive cluster-wide magnetic fields, as is commonly done, one must first remove the local contributions. This is not possible at present.
More details from the publisher
More details

Near-infrared imaging and the K-z relation for radio galaxies in the 7C Redshift Survey 

Monthly Notices of the Royal Astronomical Society 339:1 (2003) 173-188

Authors:

SG Rawlings, Blundell, K, Jarvis, M, Willott, C
More details from the publisher
More details
Details from ArXiV

Lowering Inferred Cluster Magnetic Field Strengths - the radio galaxy contributions

ArXiv astro-ph/0301260 (2003)

Authors:

L Rudnick, K Blundell

Abstract:

We present a detailed examination of the relationship between the magnetic field structures and the variations in Faraday Rotation across PKS1246-410, a radio source in the Centaurus cluster of galaxies, using data from Taylor, Fabian and Allen. We find a significant relationship between the intrinsic position angle of the polarization and the local amount of Faraday Rotation. The most plausible explanation is that most or all of the rotation is local to the source. We suggest that the rotations local to cluster radio galaxies may result from either thermal material mixed with the radio plasma, or from thin skins of warm, ionized gas in pressure balance with the observed galaxy or hot cluster atmospheres. We find that the contribution of any unrelated cluster Rotation Measure variations on scales of 2 - 10 arcsec are less than 25 rad/m^2; the standard, although model dependent, derivation of cluster fields would then lead to an upper limit of approximately 0.4 microGauss on these scales. Inspection of the distributions of Rotation Measure, polarisation angle and total intensity in 3C75, 3C465 and Cygnus A also shows source-related Faraday effects in some locations. Many effects can mask the signatures of locally-dominated RMs, so the detection of even isolated correlations can be important, although difficult to quantify statistically. In order to use radio sources such as shown here to derive {\it cluster-wide} magnetic fields, as is commonly done, one must first remove the local contributions; this is not possible at present.
Details from ArXiV
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 46
  • Page 47
  • Page 48
  • Page 49
  • Current page 50
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet