Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Test image

Katherine Blundell OBE

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Plasma physics

Sub department

  • Astrophysics

Research groups

  • Global Jet Watch
  • Pulsars, transients and relativistic astrophysics
Katherine.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)73308
Denys Wilkinson Building, room 707
www.GlobalJetWatch.net
orcid.org/0000-0001-8509-4939
  • About
  • Research
  • Gresham Professorship
  • Books
  • Teaching
  • Prizes
  • Publications

The Global Jet Watch

Radio image of the microquasar SS433
The micro quasar SS433
Link to the site

FRIIb radio sources, ambient gas densities, and clusters of galaxies

ASTR SOC P 250 (2002) 412-416

Authors:

RA Daly, EJ Guerra, MM Chester

Abstract:

FRIIb radio sources axe a special subset of all classical double radio sources with particularly simple radio bridge structures. At low radio frequencies, the surface brightness across the ridge-line of the source is accurately reproduced by accounting for adiabatic expansion in the lateral direction by an amount indicated by the observed change in the width of the radio bridge as a function of position. Thus, the physics of FRIIb sources is quite simple. The radio properties of an FRIIb source may provide a useful probe of the pressure, density, and temperature of gas surrounding the radio source. Estimates of the ambient gas density obtained from considerations of the rain-pressure confinement of the forward region of FRIIb radio sources axe discussed here. Typical ambient gas densities and the composite density profile indicate that the sources lie in gaseous environments very much like the cores of galaxy clusters. Some evolution of the core gas density and radius with redshift axe suggested by the data.
More details

Face-on dust discs in galaxies with optical jets

ASTR SOC P 250 (2002) 254-258

Authors:

WB Sparks, SA Baum, J Biretta, FD Macchetto, A Martel

Abstract:

The presence of optical synchrotron jets in radio galaxies is relatively unusual. We show that of the nearest five FRI 3CR radio galaxies showing optical jets, four display evidence for almost circular, presumably face-on, dust discs. None of the other twenty nearby FRIs in our sample show circular dust discs, although dust is found in 19/20 cases. This is strong support for the two-fold idea that (1) jets emerge close to perpendicular to inner gas discs and (2) optical non-thermal synchrotron emission is seen only when the jet points towards the observer. The implied critical angle to the line-of-sight is approximately 30-40 degrees, i.e. if the angle of the jet to the line-of-sight is less than about 35 degrees we see an optical jet. The corresponding Lorentz factor is gamma approximate to 1.5, which is consistent with current observations of jet proper motion that show an apparent velocity range from; approximate to 0.6c to 6c for M 87 in the optical (Biretta, Sparks & Macchetto 1999). The relatively low speeds implied by the dust discs may be due to a global deceleration of the jet as in unified theories, or else to stratification within the jet. Unresolved nuclei are common in the optical. Their luminosities are also consistent with the beaming concept when compared to inclination inferred from the dust lanes. The disc sizes are typically several hundred parsecs, to kiloparsec size. The galaxy with an optical jet that does not show a face-on disc, M 87, instead has more complex radial dust and ionized gas filaments.
More details

Gamma-ray bursts from black hole winds

ASTR SOC P 250 (2002) 36-40

Abstract:

Cosmological gamma-ray bursts are probably powered by high-angular momentum black hole-torus systems, formed by black hole-neutron star coalescence or magnetized collapsars. Rapidly rotating black holes surrounded by torus magnetospheres are magnetized in their ground state. In this state, the black hole is connected to infinity by,an open flux-tube of magnetic field-lines. Differential. frame-dragging permits in-situ pair-production along these flux-tubes. HETE-II may bring our understanding of short bursts on pax with that of long bursts.
More details

High energy emission in blazars

ASTR SOC P 250 (2002) 93-99

Abstract:

Different scenarios which have been proposed for the production of high energy radiation in blazars will be briefly summarized. Recent results on the energy spectral distribution of high redshift radio-loud quasars are then considered in the context of the blazar phenomenology and their consequences for our understanding of jets are discussed. Finally, a possible scenario for the origin of X-ray emission from large scale jets, as detected by Chandra, is presented.
More details

Hotspot spectral indices

ASTR SOC P 250 (2002) 298-302

Authors:

M Sandell, JP Leahy

Abstract:

In this contribution we present some interim results concerning the spectral indices of the hot-spots of high redshift radio galaxies and quasars. This work forms a part of the Distant DRAGNs Survey, a project to map at sub-kpc resolution a sample of z > 1.5 radio galaxies and quasars drawn from multiple flux-density-limited samples.
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 55
  • Page 56
  • Page 57
  • Page 58
  • Current page 59
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet