Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Crystal structure inside calcium fluoride with an implanted muon
Credit: SJB

Professor Stephen Blundell

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Muons and magnets
Stephen.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)72347
Clarendon Laboratory, room 108
  • About
  • Books
  • Teaching
  • Research
  • Publications

μSR studies of the flux vortex phases in a BEDT-TTF superconductor

Synthetic Metals 120:1-3 (2001) 1015-1016

Authors:

FL Pratt, SL Lee, CM Aegerter, C Ager, SH Lloyd, SJ Blundell, FY Ogrin, EM Forgan, H Keller, W Hayes, T Sasaki, N Toyota, S Endo

Abstract:

μSR has been used to probe the structure and stability of the flux vortex array in the organic superconductor κ-(BEDT-TTF)2Cu(SCN)2. At temperatures below 5 K and fields below 5 mT the internal field distribution is found to closely match that expected for a three dimensional (3D) Abrikosov flux line lattice (FLL). Careful studies in this 3D-FLL regime have enabled an improved measurement of the temperature dependence of the superconducting penetration depth to be made. A linear term is found in the temperature dependence of the penetration depth, suggesting the presence of line nodes in the gap parameter and d-wave pairing.
More details from the publisher

Fermi surface shape and angle-dependent magnetoresistance oscillations

Journal of Physics Condensed Matter 13:10 (2001) 2271-2279

Authors:

MS Nam, SJ Blundell, A Ardavan, JA Symington, J Singleton

Abstract:

The shape of the Fermi surface of organic metals can be measured by recording angle-dependent magnetoresistance oscillations. We review this technique and develop a model for parametrizing the shape of the quasi-two-dimensional Fermi surface sections which often appear in organic metals. Using this model, we show that it is possible to extract more detail about the quasi-two-dimensional pocket shape from angle-dependent magnetoresistance oscillations than in the traditional approximation which assumes an elliptical Fermi surface shape. We also consider the implications for cyclotron resonance experiments.
More details from the publisher

Longitudinal muon spin relaxation in metals and semimetals and the Korringa law

Journal of Physics Condensed Matter 13:10 (2001) 2163-2168

Authors:

SJ Blundell, SFJ Cox

Abstract:

The longitudinal muon spin relaxation in metals and semimetals is suggestive of a form of Korringa relaxation in which the hyperfine interaction between the muons and the conduction electrons plays a dominant rôle. We give an alternative derivation of the Korringa law and show how muons may thus be used to study interactions with conduction electrons at interstitial sites. The alternative derivation links the topic to the use of implanted muons both as probes of magnetic and correlated-electron systems and as proton analogues, modelling the behaviour of hydrogen impurity in metals and semimetals.
More details from the publisher
More details

Muon-spin-rotation and magnetization study of metal-organic magnets based on the dicyanamide anion

Journal of Physics Condensed Matter 13:10 (2001) 2263-2270

Authors:

T Jestädt, M Kurmoo, SJ Blundell, FL Pratt, CJ Kepert, K Prassides, BW Lovett, IM Marshall, A Husmann, KH Chow, RM Valladares, CM Brown, A Lappas

Abstract:

We report the results of a study of the metal-organic magnets MII[N(CN)2]2, where MII = Ni, Co and Mn, using bulk magnetization and muon-spin relaxation (μSR). Implanted muons are sensitive to the onset of long-range magnetic order in each of these materials and strong muon-spin relaxation is observed in the paramagnetic state due to low-frequency fluctuations of the electronic moments in the 109-1010 Hz range. The size of the muon-spin relaxation in the paramagnetic state can be related to the magnitude of the transition-metal-ion moment. Very strongly damped oscillations are observed below the magnetic transition temperature in Co[N(CN)2]2.
More details from the publisher
More details

Control of magnetic ordering by Jahn--Teller distortions in Nd(2)GaMnO(6) and La(2)GaMnO(6).

J Am Chem Soc 123:6 (2001) 1111-1122

Authors:

EJ Cussen, MJ Rosseinsky, PD Battle, JC Burley, LE Spring, JF Vente, SJ Blundell, AI Coldea, J Singleton

Abstract:

The substitution of Ga(3+) into the Jahn--Teller distorted, antiferromagnetic perovskites LaMnO(3) and NdMnO(3) strongly affects both the crystal structures and resulting magnetic ordering. In both compounds the Ga(3+) and Mn(3+) cations are disordered over the six coordinate sites. La(2)GaMnO(6) is a ferromagnetic insulator (T(c) = 70 K); a moment per Mn cation of 2.08(5) mu(B) has been determined by neutron powder diffraction at 5 K. Bond length and displacement parameter data suggest Jahn--Teller distortions which are both coherent and incoherent with the Pnma space group symmetry of the perovskite structure (a = 5.51122(4) A, b = 7.80515(6) A, c = 5.52947(4) A) at room temperature. The coherent distortion is strongly suppressed in comparison with the parent LaMnO(3) phase, but the displacement ellipsoids suggest that incoherent distortions are significant and arise from local Jahn--Teller distortions. The preparation of the new phase Nd(2)GaMnO(6) has been found to depend on sample cooling rates, with detailed characterization necessary to ensure phase separation has been avoided. This compound also adopts the GdFeO(3)-type orthorhombically distorted perovskite structure (space group Pnma, a = 5.64876(1) A, b = 7.65212(2) A, c = 5.41943(1) A at room temperature). However, the B site substitution has a totally different effect on the Jahn--Teller distortion at the Mn(3+) centers. This phase exhibits a Q(2) mode Jahn--Teller distortion similar to that observed in LaMnO(3), although reduced in magnitude as a result of the introduction of Ga(3+) onto the B site. There is no evidence of a dynamic Jahn-Teller distortion. At 5 K a ferromagnetically ordered Nd(3+) moment of 1.06(6) mu(B) is aligned along the y-axis and a moment of 2.8(1) mu(B) per Mn(3+) is ordered in the xy plane making an angle of 29(2) degrees with the y-axis. The Mn(3+) moments couple ferromagnetically in the xz plane. However, along the y-axis the moments couple ferromagnetically while the x components are coupled antiferromagnetically. This results in a canted antiferromagnetic arrangement in which the dominant exchange is ferromagnetic. Nd(2)GaMnO(6) is paramagnetic above 40(5) K, with a paramagnetic moment and Weiss constant of 6.70(2) mu(B) and 45.9(4) K, respectively. An ordered moment of 6.08(3) mu(B) per Nd(2)GaMnO(6) formula unit was measured by magnetometry at 5 K in an applied magnetic field of 5 T.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 130
  • Page 131
  • Page 132
  • Page 133
  • Current page 134
  • Page 135
  • Page 136
  • Page 137
  • Page 138
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet