Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Clarendon Laboratory and Beecroft Building

Andrew Boothroyd

Interim Head of Department

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • X-ray and neutron scattering
Andrew.Boothroyd@physics.ox.ac.uk
Telephone: 01865 (2)72376
Clarendon Laboratory, room 172,175,377
ORCID ID 0000-0002-3575-7471
ResearcherID AAA-7883-2021
  • About
  • News
  • Research
  • Teaching
  • Prizes, awards and recognition
  • Software
  • Vacancies
  • Publications

Textbook

Principles of Neutron Scattering from Condensed Matter
Principles of Neutron Scattering from Condensed Matter

Published by Oxford University Press in July 2020

Buy now

The J eff=1/2 insulator Sr 3Ir 2O 7 studied by means of angle-resolved photoemission spectroscopy

Journal of Physics Condensed Matter 24:41 (2012)

Authors:

BM Wojek, MH Berntsen, S Boseggia, AT Boothroyd, D Prabhakaran, DF McMorrow, HM Ronnow, J Chang, O Tjernberg

Abstract:

The low-energy electronic structure of the J eff=1/2 spinorbit insulator Sr 3Ir 2O 7 has been studied by means of angle-resolved photoemission spectroscopy. A comparison of the results for bilayer Sr 3Ir 2O 7 with available literature data for the related single-layer compound Sr2IrO4 reveals qualitative similarities and similar J eff=1/2 bandwidths for the two materials, but also pronounced differences in the distribution of the spectral weight. In particular, photoemission from the J eff=1/2 states appears to be suppressed. Yet, it is found that the Sr 3Ir 2O 7 data are in overall better agreement with band-structure calculations than the data for Sr 2IrO 4. © 2012 IOP Publishing Ltd.
More details from the publisher

The Jeff = 1/2 insulator Sr3Ir2O7 studied by means of angle-resolved photoemission spectroscopy.

J Phys Condens Matter 24:41 (2012) 415602

Authors:

BM Wojek, MH Berntsen, S Boseggia, AT Boothroyd, D Prabhakaran, DF McMorrow, HM Rønnow, J Chang, O Tjernberg

Abstract:

The low-energy electronic structure of the J(eff) = 1/2 spin-orbit insulator Sr3Ir2O7 has been studied by means of angle-resolved photoemission spectroscopy. A comparison of the results for bilayer Sr3Ir2O7 with available literature data for the related single-layer compound Sr2IrO4 reveals qualitative similarities and similar J(eff) = 1/2 bandwidths for the two materials, but also pronounced differences in the distribution of the spectral weight. In particular, photoemission from J(eff) = 1/2 the states appears to be suppressed. Yet, it is found that the Sr3Ir2O7 data are in overall better agreement with band-structure calculations than the data for Sr2IrO4.
More details from the publisher
More details
Details from ArXiV

Spin-wave excitations and superconducting resonant mode in Cs xFe 2-ySe 2

Physical Review B - Condensed Matter and Materials Physics 86:9 (2012)

Authors:

AE Taylor, RA Ewings, TG Perring, JS White, P Babkevich, A Krzton-Maziopa, E Pomjakushina, K Conder, AT Boothroyd

Abstract:

We report neutron inelastic scattering measurements on the normal and superconducting states of single-crystalline Cs 0.8Fe 1.9Se 2. Consistent with previous measurements on Rb xFe 2-ySe 2, we observe two distinct spin excitation signals: (i) spin-wave excitations characteristic of the block antiferromagnetic order found in insulating A xFe 2-ySe 2 compounds, and (ii) a resonance-like magnetic peak localized in energy at 11 meV and at an in-plane wave-vector of (0.25,0.5). The resonance peak increases below T c=27 K, and has a similar absolute intensity to the resonance peaks observed in other Fe-based superconductors. The existence of a magnetic resonance in the spectrum of Rb xFe 2-ySe 2 and now of Cs xFe 2-ySe 2 suggests that this is a common feature of superconductivity in this family. The low-energy spin-wave excitations in Cs 0.8Fe 1.9Se 2 show no measurable response to superconductivity, consistent with the notion of spatially separate magnetic and superconducting phases. © 2012 American Physical Society.
More details from the publisher
More details
Details from ArXiV

Spin-wave excitations and superconducting resonant mode in Cs(x)Fe(2-y)Se2

(2012)

Authors:

AE Taylor, RA Ewings, TG Perring, JS White, P Babkevich, A Krzton-Maziopa, E Pomjakushina, K Conder, AT Boothroyd
More details from the publisher

On the magnetic structure of Sr3Ir2O7: an x-ray resonant scattering study.

J Phys Condens Matter 24:31 (2012) 312202

Authors:

S Boseggia, R Springell, HC Walker, AT Boothroyd, D Prabhakaran, SP Collins, DF McMorrow

Abstract:

This report presents azimuthal dependent and polarization dependent x-ray resonant magnetic scattering at the Ir L(3) edge for the bilayered iridate compound Sr(3)Ir(2)O(7). The two magnetic wave vectors, k1 = (1/2, 1/2, 0) and k2 = (1/2, -1/2, 0), result in domains of two symmetry-related G-type antiferromagnetic structures, denoted A and B, respectively. These domains are approximately 0.02 mm(2) and are independent of the thermal history. An understanding of this key aspect of the magnetism is necessary for an overall picture of the magnetic behaviour in this compound. The azimuthal and polarization dependence of the magnetic reflections, relating to both magnetic wavevectors, show that the Ir magnetic moments in the bilayer compound are oriented along the c axis. This contrasts with single layer Sr(2)IrO(4) where the moments are confined to the ab plane.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Current page 34
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet