Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Clarendon Laboratory and Beecroft Building

Andrew Boothroyd

Interim Head of Department

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • X-ray and neutron scattering
Andrew.Boothroyd@physics.ox.ac.uk
Telephone: 01865 (2)72376
Clarendon Laboratory, room 172,175,377
ORCID ID 0000-0002-3575-7471
ResearcherID AAA-7883-2021
  • About
  • News
  • Research
  • Teaching
  • Prizes, awards and recognition
  • Software
  • Vacancies
  • Publications

Textbook

Principles of Neutron Scattering from Condensed Matter
Principles of Neutron Scattering from Condensed Matter

Published by Oxford University Press in July 2020

Buy now

Observation of orbital currents in CuO.

Science 332:6030 (2011) 696-698

Authors:

V Scagnoli, U Staub, Y Bodenthin, RA de Souza, M García-Fernández, M Garganourakis, AT Boothroyd, D Prabhakaran, SW Lovesey

Abstract:

Orbital currents are proposed to be the order parameter of the pseudo-gap phase of cuprate high-temperature superconductors. We used resonant x-ray diffraction to observe orbital currents in a copper-oxygen plaquette, the basic building block of cuprate superconductors. The confirmation of the existence of orbital currents is an important step toward the understanding of the cuprates as well as materials lacking inversion symmetry, such as magnetically induced multiferroics. Although observed in the antiferromagnetic state of cupric oxide, we show that orbital currents can occur even in the absence of long-range magnetic moment ordering.
More details from the publisher
More details

Spin fluctuations in LiFeAs observed by neutron scattering

(2011)

Authors:

AE Taylor, MJ Pitcher, RA Ewings, TG Perring, SJ Clarke, AT Boothroyd
More details from the publisher

Bilayer manganites: polarons in the midst of a metallic breakdown

(2011)

Authors:

F Massee, S de Jong Y Huang, WK Siu, I Santoso, A Mans, AT Boothroyd, D Prabhakaran, R Follath, A Varykhalov, L Patthey, M Shi, JB Goedkoop, MS Golden
More details from the publisher

An hour-glass magnetic spectrum in an insulating, hole-doped antiferromagnet.

Nature 471:7338 (2011) 341-344

Authors:

AT Boothroyd, P Babkevich, D Prabhakaran, PG Freeman

Abstract:

Superconductivity in layered copper oxide compounds emerges when charge carriers are added to antiferromagnetically ordered CuO(2) layers. The carriers destroy the antiferromagnetic order, but strong spin fluctuations persist throughout the superconducting phase and are intimately linked to superconductivity. Neutron scattering measurements of spin fluctuations in hole-doped copper oxides have revealed an unusual 'hour-glass' feature in the momentum-resolved magnetic spectrum that is present in a wide range of superconducting and non-superconducting materials. There is no widely accepted explanation for this feature. One possibility is that it derives from a pattern of alternating spin and charge stripes, and this idea is supported by measurements on stripe-ordered La(1.875)Ba(0.125)CuO(4) (ref. 15). Many copper oxides without stripe order, however, also exhibit an hour-glass spectrum. Here we report the observation of an hour-glass magnetic spectrum in a hole-doped antiferromagnet from outside the family of superconducting copper oxides. Our system has stripe correlations and is an insulator, which means that its magnetic dynamics can conclusively be ascribed to stripes. The results provide compelling evidence that the hour-glass spectrum in the copper oxide superconductors arises from fluctuating stripes.
More details from the publisher
More details
Details from ArXiV

Low-energy quasi-one-dimensional spin dynamics in charge-ordered La 2-xSrxNiO4

Physical Review B - Condensed Matter and Materials Physics 83:9 (2011)

Authors:

PG Freeman, D Prabhakaran, K Nakajima, A Stunault, M Enderle, C Niedermayer, CD Frost, K Yamada, AT Boothroyd

Abstract:

The low-energy spin excitations of La2-xSrxNiO 4, x=0.275 and 1/3, have been investigated by unpolarized- and polarized-inelastic neutron scattering from single crystals. A pattern of magnetic diffuse scattering is observed in both compositions and is consistent with quasi-one-dimensional AFM spin correlations along the charge stripes. Analysis of the energy line shape for x=1/3 indicates that the diffuse scattering is inelastic with a characteristic energy of 1.40±0.07 meV. There is no discernible difference between the diffuse scattering from x=0.275 and x=1/3, suggesting that it is an intrinsic property of the charge stripes. © 2011 American Physical Society.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Current page 41
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet