Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Clarendon Laboratory and Beecroft Building

Andrew Boothroyd

Interim Head of Department

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • X-ray and neutron scattering
Andrew.Boothroyd@physics.ox.ac.uk
Telephone: 01865 (2)72376
Clarendon Laboratory, room 172,175,377
ORCID ID 0000-0002-3575-7471
ResearcherID AAA-7883-2021
  • About
  • News
  • Research
  • Teaching
  • Prizes, awards and recognition
  • Software
  • Vacancies
  • Publications

Textbook

Principles of Neutron Scattering from Condensed Matter
Principles of Neutron Scattering from Condensed Matter

Published by Oxford University Press in July 2020

Buy now

Determining Crystal Field Distortions of YVO3 though X-ray Scattering

MAGNETISM AND MAGNETIC MATERIALS TRANS TECH PUBLICATIONS LTD, LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND 152-153 (2009) 147-148

Authors:

TAW Beale, RD Johnson, SR Bland, PD Hatton, L Bouchenoir, AT Boothroyd, D Prabhakaran

Abstract:

We present resonant x-ray scattering experimental data from YVO3. By scattering at the vanadium K edge we are able to observe diffraction from the anisotropic tensor of susceptibility at the Bragg forbidden (010). The resonant energy spectra from these reflections are unusually complex, giving an indication of the crystal field distortions around the vanadium site.
More details from the publisher
More details

Going beyond the dipole approximation to improve the refinement of magnetic structures by neutron diffraction

PHYSICAL REVIEW B 79:14 (2009) ARTN 140405

Authors:

M Rotter, AT Boothroyd
More details from the publisher

High-resolution hard x-ray photoemission investigation of La 2-2xSr1+2xMn2O7 (0.30≤x<0.50): Microscopic phase separation and surface electronic structure of a bilayer colossal magnetoresistance manganite

Physical Review B - Condensed Matter and Materials Physics 80:20 (2009)

Authors:

S De Jong, F Massee, Y Huang, M Gorgoi, F Schaefers, J Fink, AT Boothroyd, D Prabhakaran, JB Goedkoop, MS Golden
More details from the publisher
Details from ArXiV

Nonthermal Melting of Orbital Order in La1/2Sr3/2MnO4 by Coherent Excitation of a Mn-O Stretching Mode

ULTRAFAST PHENOMENA XVI 92 (2009) 182-184

Authors:

Raanan I Tobey, Dharmalingam Prabhakaran, Andrew T Boothroyd, Andrea Cavalleri
More details
More details from the publisher

Structure and superconductivity of LiFeAs.

Chem Commun (Camb) (2008) 5918-5920

Authors:

Michael J Pitcher, Dinah R Parker, Paul Adamson, Sebastian JC Herkelrath, Andrew T Boothroyd, Richard M Ibberson, Michela Brunelli, Simon J Clarke

Abstract:

Lithium iron arsenide phases with compositions close to LiFeAs exhibit superconductivity at temperatures at least as high as 16 K, demonstrating that superconducting [FeAs](-) anionic layers with the anti-PbO structure type occur in at least three different structure types and with a wide range of As-Fe-As bond angles.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 50
  • Page 51
  • Page 52
  • Page 53
  • Current page 54
  • Page 55
  • Page 56
  • Page 57
  • Page 58
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet