Magnetic order and dynamics of the charge-ordered antiferromagnet La1.5Sr0.5CoO4
Phys Rev B AIP 80:13 (2009) 134414
Abstract:
We describe neutron-scattering experiments performed to investigate the magnetic order and dynamics of half-doped La1.5Sr0.5CoO4. This layered perovskite exhibits a near-ideal checkerboard pattern of Co2+/Co3+ charge order at temperatures below ~800 K. Magnetic correlations are observed at temperatures below ~60 K but the magnetic order only becomes established at 31 K, a temperature at which a kink is observed in the susceptibility. On warming above 31 K we observed a change in the magnetic correlations which we attribute either to a spin canting or to a change in the proportion of inequivalent magnetic domains. The magnetic excitation spectrum is dominated by an intense band extending above a gap of approximately 3 meV up to a maximum energy of 16 meV. A weaker band exists in the energy range of 20–30 meV. We show that the excitation spectrum is in excellent quantitative agreement with the predictions of a spin-wave theory generalized to include the full magnetic degrees of freedom of high-spin Co2+ ions in an axially distorted crystal field, coupled by Heisenberg exchange interactions. The magnetic order is found to be stabilized by dominant antiferromagnetic Co2+–Co2+ interactions acting in a straight line through Co3+. No evidence is found for magnetic scattering from the Co3+ ions, supporting the view that Co3+ is in the S=0 state in this material.Nature of the magnetic order and origin of induced ferroelectricity in TbMnO$_3$
(2009)
X-ray resonant scattering study of the magnetic phase diagram of multiferroic TbMnO3
PHYSICA B Elsevir 404:19 (2009) 3264-3266
Abstract:
We present the magnetic phase diagram of multiferroic TbMnO3 for H parallel to b determined using X-ray resonant scattering at the Tb L-3-edge. Investigations of two different magnetic domains, C-type and F-type, demonstrate very similar behaviour in high applied magnetic fields, with a low temperature incommensurate to commensurate transition at H similar or equal to 4.5T, concurrent with the polarisation flop observed in bulk magnetoelectric measurements. (C) 2009 Elsevier B.V. All rights reserved.Structural studies on Na0.75 CoO2 thermoelectric material at high pressures
Solid State Communications 149:39-40 (2009) 1712-1716
Abstract:
The crystal structure of Na0.75CoO2 was studied at ambient and low temperatures down to 10 K at pressures up to 40 GPa using synchrotron x-rays and a diamond cell in angle dispersion geometry. A reduction in the c / a ratio was observed at both conditions with the application of pressure. An increase in Co-O bond lengths and a decrease in Na-O bond lengths were observed above 10 GPa. The results of the density functional calculations performed agree well with the pressure induced bond length changes. The anomalous change in the c / a ratio and bond lengths indicate a pressure induced isostructural phase transition above 10 GPa. Bulk modulus calculations show this compound is less compressible than its hydrated analogues. © 2009 Elsevier Ltd.Inward dispersion of the spin excitation spectrum of stripe-ordered La2NiO4+delta
PHYS REV B 80:14 (2009) 144523