Nature of the magnetic order in the charge-ordered cuprate La1.48Nd0.4Sr0.12CuO4.
Phys Rev Lett 98:19 (2007) 197003
Abstract:
Using polarized neutron scattering we establish that the magnetic order in La(1.48)Nd(0.4)Sr(0.12)CuO(4) is either (i) one dimensionally modulated and collinear, consistent with the stripe model or (ii) two dimensionally modulated with a novel noncollinear structure. The measurements rule out a number of alternative models characterized by 2D electronic order or 1D helical spin order. The low-energy spin excitations are found to be primarily transversely polarized relative to the stripe ordered state, consistent with conventional spin waves.Magnetic excitations of charge-ordered La2NiO4.11
J MAGN MAGN MATER 310:2 (2007) 760-762
Abstract:
The incommensurate magnetic excitations of spin-charge ordered La2NiO4.11 were studied by inelastic neutron scattering. With increasing energy up to similar to 20meV the maximum intensity of the spin excitations is observed to shift slightly towards the 2D antiferromagnetic wave vector (1/2, 1/2). This asymmetry in the magnon dispersion about the incommensurate wave vector is a similar effect, though less marked, to what has been observed in the layered cuprate superconductors. (c) 2006 Elsevier B.V. All rights reserved.Patterning of sodium ions and the control of electrons in sodium cobaltate.
Nature 445:7128 (2007) 631-634
Abstract:
Sodium cobaltate (Na(x)CoO2) has emerged as a material of exceptional scientific interest due to the potential for thermoelectric applications, and because the strong interplay between the magnetic and superconducting properties has led to close comparisons with the physics of the superconducting copper oxides. The density x of the sodium in the intercalation layers can be altered electrochemically, directly changing the number of conduction electrons on the triangular Co layers. Recent electron diffraction measurements reveal a kaleidoscope of Na+ ion patterns as a function of concentration. Here we use single-crystal neutron diffraction supported by numerical simulations to determine the long-range three-dimensional superstructures of these ions. We show that the sodium ordering and its associated distortion field are governed by pure electrostatics, and that the organizational principle is the stabilization of charge droplets that order long range at some simple fractional fillings. Our results provide a good starting point to understand the electronic properties in terms of a Hubbard hamiltonian that takes into account the electrostatic potential from the Na superstructures. The resulting depth of potential wells in the Co layer is greater than the single-particle hopping kinetic energy and as a consequence, holes preferentially occupy the lowest potential regions. Thus we conclude that the Na+ ion patterning has a decisive role in the transport and magnetic properties.Influence of static Jahn-Teller distortion on the magnetic excitation spectrum of PrO2:: A synchrotron x-ray and neutron inelastic scattering study
PHYSICAL REVIEW B 76:13 (2007) ARTN 134419
Terahertz-frequency conductivity of charge stripes in the antiferromagnet La5/3Sr1/3NiO4
(2007) 852-853