Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Neil Bowles

Professor of Planetary Science

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary atmosphere observation analysis
  • Planetary surfaces
  • Solar system
  • Space instrumentation
Neil.Bowles@physics.ox.ac.uk
Telephone: 01865 (2)72097
Atmospheric Physics Clarendon Laboratory, room 307
  • About
  • Publications

A new experimental setup for making thermal emission measurements in a simulated lunar environment.

Rev Sci Instrum 83:12 (2012) 124502

Authors:

IR Thomas, BT Greenhagen, NE Bowles, KL Donaldson Hanna, J Temple, SB Calcutt

Abstract:

One of the key problems in determining lunar surface composition for thermal-infrared measurements is the lack of comparable laboratory-measured spectra. As the surface is typically composed of fine-grained particulates, the lunar environment induces a thermal gradient within the near sub-surface, altering the emission spectra: this environment must therefore be simulated in the laboratory, considerably increasing the complexity of the measurement. Previous measurements have created this thermal gradient by either heating the cup in which the sample sits or by illuminating the sample using a solar-like source. This is the first setup able to measure in both configurations, allowing direct comparisons to be made between the two. Also, measurements across a wider spectral range and at a much higher spectral resolution can be acquired using this new setup. These are required to support new measurements made by the Diviner Lunar Radiometer, the first multi-spectral thermal-infrared instrument to orbit the Moon. Results from the two different heating methods are presented, with measurements of a fine-grained quartz sample compared to previous similar measurements, plus measurements of a common lunar highland material, anorthite. The results show that quartz gives the same results for both methods of heating, as predicted by previous studies, though the anorthite spectra are different. The new calibration pipeline required to convert the raw data into emissivity spectra is described also.
More details from the publisher
Details from ORA
More details

An integrated payload design for the Exoplanet Characterisation Observatory (EChO)

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 8442 (2012) 84421g-84421g-14

Authors:

Bruce Swinyard, Giovanna Tinetti, Paul Eccleston, Alberto Adriani, Jean-Philippe Beaulieu, Tomas Belenguer Davila, Neil Bowles, Ian Bryson, Vincent Coudé du Foresto, Marc Ferlet, Paul Hartogh, Pierre-Olivier Lagage, Tanya Lim, Giuseppe Malaguti, Mercedes López-Morales, Giuseppina Micela, Gianluca Morgante, Hans Ulrik Nørgaard-Nielsen, Marc Ollivier, Emanuele Pace, Enzo Pascale, Giuseppe Piccioni, Gonzalo Ramos Zapata, Jean-Michel Reess, Ignasi Ribas, Alessandro Sozzetti, Jonathan Tennyson, Marcell Tessenyi, Mark R Swain, Berend Winter, Ingo Waldmann, Gillian Wright, Maria-Rosa Zapatero Osorio, Athena Coustenis
More details from the publisher

Investigation of new band parameters with temperature dependence for self-broadened methane gas in the range 9000 to 14,000cm -1 (0.71 to 1.1μm)

Journal of Quantitative Spectroscopy and Radiative Transfer 113:10 (2012) 763-782

Authors:

N Bowles, R Passmore, K Smith, G Williams, S Calcutt, PGJ Irwin

Abstract:

This paper describes new measurements and modelling of the absorption of methane gas, one of the most important gases observed in the atmospheres of the outer planets and Titan, between 9000 and 14,000cm -1 (0.7 to 1.1μm) and compares them with current best available spectral models.A series of methane spectra were measured at the UK's Natural Environment Research Council (NERC) Molecular Spectroscopy Facility (based at the Rutherford Appleton Laboratory, Oxfordshire, UK) using a Brüker 125HR Fourier transform spectrometer. To approximate the conditions found in outer planet atmospheres, the spectra were measured over a wide range of pressures (5bar to 38mbar) and temperatures (290-100K) with path lengths of 19.3, 17.6, 16.0 and 14.4m. The spectra were recorded at a moderate resolution of 0.12cm -1 and then averaged to 10cm -1 resolution prior to fitting a series of increasingly complex band-models including temperature dependence. Using the most complex model, a Goody line distribution with a Voigt line shape and two lower energy state levels, the typical rms residual error in the fit is between 0.01 and 0.02 in the wings of the main absorption bands.The new spectral parameters were then compared with the measured spectra and spectra calculated using existing data and shown to be able to accurately reproduce the measured absorption. The improvement in the temperature dependence included in the model is demonstrated by comparison with existing cold methane spectral data for a typical Jovian path. © 2012 Elsevier Ltd.
More details from the publisher

EnVision: taking the pulse of our twin planet

Experimental Astronomy Springer Nature 33:2-3 (2012) 337-363

Authors:

Richard C Ghail, Colin Wilson, Marina Galand, David Hall, Chris Cochrane, Philippa Mason, Joern Helbert, Franck MontMessin, Sanjay Limaye, Manish Patel, Neil Bowles, Daphne Stam, Jan-Erik Wahlund, Fabio Rocca, David Waltham, Tamsin A Mather, Juliet Biggs, Matthew Genge, Philippe Paillou, Karl Mitchell, Lionel Wilson, Upendra N Singh
More details from the publisher

Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission

Experimental Astronomy Springer Nature 33:2-3 (2012) 587-644

Authors:

Alan Smith, IA Crawford, Robert Anthony Gowen, R Ambrosi, M Anand, B Banerdt, N Bannister, N Bowles, C Braithwaite, P Brown, J Chela-Flores, T Cholinser, P Church, AJ Coates, T Colaprete, G Collins, G Collinson, T Cook, R Elphic, G Fraser, Y Gao, E Gibson, T Glotch, M Grande, A Griffiths, J Grygorczuk, M Gudipati, A Hagermann, J Heldmann, LL Hood, AP Jones, KH Joy, OB Khavroshkin, G Klingelhoefer, M Knapmeyer, G Kramer, D Lawrence, W Marczewski, S McKenna-Lawlor, K Miljkovic, S Narendranath, E Palomba, A Phipps, WT Pike, D Pullan, J Rask, DT Richard, K Seweryn, S Sheridan, M Sims, M Sweeting, T Swindle, D Talboys, L Taylor, N Teanby, V Tong, S Ulamec, R Wawrzaszek, M Wieczorek, L Wilson, I Wright
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet