Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Andrew Bunker

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
Andy.Bunker@physics.ox.ac.uk
Telephone: 01865 (2)83126
Denys Wilkinson Building, room 702
  • About
  • Publications

GA-NIFS: Understanding the ionization nature of EGSY8p7/CEERS-1019. Evidence for a star formation-driven outflow at z = 8.6

(2025)

Authors:

Sandra Zamora, Stefano Carniani, Elena Bertola, Eleonora Parlanti, Pablo G Pérez-González, Santiago Arribas, Torsten Böker, Andrew J Bunker, Francesco D'Eugenio, Roberto Maiolino, Michele Perna, Bruno Rodríguez Del Pino, Hannah Übler, Giovanni Cresci, Gareth C Jones, Isabella Lamperti, Jan Scholtz, Bartolomeo Trefoloni, Giacomo Venturi

GA-NIFS: A smouldering disk galaxy undergoing ordered rotation at z=4.26

(2025)

Authors:

Gareth C Jones, Roberto Maiolino, Francesco D'Eugenio, Santiago Arribas, Andrew J Bunker, Stephane Charlot, Michele Perna, Bruno Rodriguez del Pino, Hannah Übler, Torsten Böker, Giovanni Cresci, Isabella Lamperti, Eleonora Parlanti, Robert Pascalau, Jan Scholtz, Sandra Zamora

MIRI spectrophotometry of GN-z11: Detection and nature of an optical red continuum component

(2025)

Authors:

A Crespo Gómez, L Colina, PG Pérez-González, J Álvarez-Márquez, M García-Marín, A Alonso-Herrero, M Annunziatella, A Bik, S Bosman, AJ Bunker, A Labiano, D Langeroodi, P Rinaldi, G Östlin, L Boogaard, S Gillman, G Barro, SL Finkelstein, GCK Leung

JADES: Low Surface Brightness Galaxies at 0.4 < z < 0.8 in GOODS-S

(2025)

Authors:

Tristen Shields, Marcia Rieke, Kevin Hainline, Jakob M Helton, Andrew J Bunker, Courtney Carreira, Emma Curtis-Lake, Daniel J Eisenstein, Benjamin D Johnson, Pierluigi Rinaldi, Brant Robertson, Christina C Williams, Christopher NA Willmer, Yang Sun

Deciphering the Nature of Virgil: An Obscured Active Galactic Nucleus Lurking within an Apparently Normal Lyα Emitter during Cosmic Reionization

The Astrophysical Journal American Astronomical Society 994:1 (2025) 86

Authors:

Pierluigi Rinaldi, Pablo G Pérez-González, George H Rieke, Jianwei Lyu, Francesco D’Eugenio, Zihao Wu, Stefano Carniani, Tobias J Looser, Irene Shivaei, Leindert A Boogaard, Tanio Diaz-Santos, Luis Colina, Göran Östlin, Stacey Alberts, Javier Álvarez-Márquez, Marianna Annuziatella, Manuel Aravena, Rachana Bhatawdekar, Andrew J Bunker, Karina I Caputi, Stéphane Charlot, Alejandro Crespo Gómez, Mirko Curti, Andreas Eckart, Steven Gillman, Kevin Hainline, Nimisha Kumari, Jens Hjorth, Edoardo Iani, Hanae Inami, Zhiyuan Ji, Benjamin D Johnson, Gareth C Jones, Álvaro Labiano, Roberto Maiolino, Jens Melinder, Thibaud Moutard, Florian Peissker, Marcia Rieke, Brant Robertson, Jan Scholtz, Sandro Tacchella, Paul P van der Werf, Fabian Walter, Christina C Williams, Chris Willott, Joris Witstok, Hannah Übler, Yongda Zhu

Abstract:

We present a comprehensive analysis of the MIRI Extremely Red Object Virgil, a Lyα emitter at zspec = 6.6379 ± 0.0035 with the photometric properties of a Little Red Dot. Leveraging new JWST/MIRI imaging from the MIDIS and PAHSPECS programs, we confirm Virgil’s extraordinary nature among galaxies in JADES/GOODS-South, exhibiting a strikingly red NIRCam-to-MIRI color (F444W–F1500W = 2.84 ± 0.04 mag). Deep NIRSpec/PRISM spectroscopy from the OASIS program offers key insights into the host galaxy, revealing properties of an average star-forming galaxy during Cosmic Reionization, such as a subsolar metallicity, low-to-moderate dust content, and a relatively high ionization parameter and electron temperature. By estimating the star formation rate of Virgil from UV and Hα, we find evidence that the galaxy is either entering or fading out of a bursty episode. Although line-ratio diagnostics employed at high z would classify Virgil as an active galactic nucleus (AGN), this classification becomes ambiguous once redshift evolution is considered. Nonetheless, Virgil occupies the same parameter space as recently confirmed AGNs at similar redshifts. The new deep MIRI data at 15 μm reinforce the AGN nature of Virgil, as inferred from multiple spectral energy distribution (SED) fitting codes. Virgil’s rising infrared SED and UV excess resemble those of Dust-Obscured Galaxies (DOGs) studied with Spitzer at Cosmic Noon, particularly blue-excess HotDOGs. Our results highlight the need for a multiwavelength approach incorporating MIRI to uncover such extreme sources at z ≳ 6 and to shed light on the interplay between galaxy evolution and early black hole growth during Cosmic Reionization.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet