Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Andrew Bunker

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
Andy.Bunker@physics.ox.ac.uk
Telephone: 01865 (2)83126
Denys Wilkinson Building, room 702
  • About
  • Publications

Cloudy with a chance of starshine: Possible photometric signatures of nebular-dominated emission in $1.5 < z < 8.5$ JADES galaxies

(2025)

Authors:

James AA Trussler, Alex J Cameron, Daniel J Eisenstein, Harley Katz, Nathan J Adams, Duncan Austin, Andrew J Bunker, Stefano Carniani, Christopher J Conselice, Mirko Curti, Emma Curtis-Lake, Kevin Hainline, Thomas Harvey, Benjamin D Johnson, Qiong Li, Tobias J Looser, Pierluigi Rinaldi, Brant Robertson, Fengwu Sun, Sandro Tacchella, Christina C Williams, Christopher NA Willmer, Chris Willott, Zihao Wu
More details from the publisher

The Relation Between AGN and Host Galaxy Properties in the JWST Era: II. The merger-driven evolution of Seyferts at Cosmic Noon

(2025)

Authors:

Nina Bonaventura, Jianwei Lyu, George H Rieke, Andrew J Bunker, Chris J Willott, Christopher NA Willmer
More details from the publisher

The Parallel Ionizing Emissivity Survey (PIE). I. Survey Design and Selection of Candidate Lyman Continuum Leakers at 3.1 < z < 3.5

The Astrophysical Journal American Astronomical Society 992:1 (2025) 155

Authors:

Alexander Beckett, Marc Rafelski, Claudia Scarlata, Wanjia Hu, Keunho Kim, Ilias Goovaerts, Matthew A Malkan, Wayne Webb, Harry Teplitz, Matthew Hayes, Vihang Mehta, Anahita Alavi, Andrew J Bunker, Annalisa Citro, Nimish Hathi, Alaina Henry, Alexandra Le Reste, Alessia Moretti, Michael J Rutkowski, Maxime Trebitsch, Anita Zanella

Abstract:

We present the survey design and initial results from the Parallel Ionizing Emissivity (PIE) survey. PIE is a large Hubble Space Telescope survey designed to detect Lyman continuum (LyC) emitting galaxies at 3.1 < z < 3.5 and stack their images in order to measure average LyC escape fractions as a function of galaxy properties. PIE has imaged 37 independent fields in three filters (F336W, F625W, and F814W), of which 18 are observed with a fourth band (F475W) from the accompanying PIE+ program. We use photometric colors to select candidate Lyman break galaxies (LBGs) at 3.1 < z < 3.5, which can be followed up using ground-based spectrographs to confirm their redshifts. Unlike previous surveys, we use many independent fields to remove biases caused by correlated absorption in the intergalactic medium (IGM). In this paper, we describe the survey design, photometric measurements, and the use of mock galaxy samples to optimize our color selection. With three filters, we can select a galaxy sample of which ≈90% are LBGs and over 30% lie in the 3.1 < z < 3.5 range for which we can detect uncontaminated LyC emission in F336W. We also use mock IGM sight lines to measure the expected transmission of the IGM, which will allow us to determine escape fractions from our stacked galaxies. We color-select ≈1400 galaxies, and predict that this includes ≈80 LyC-emitting galaxies and ≈500 that we can use in stacking. Finally, we present the Keck/LRIS spectrum of a galaxy at z ≈ 2.99, demonstrating that we can confirm the redshifts of z ∼ 3 galaxies from the ground.
More details from the publisher

Beyond the stars: Linking H$α$ sizes, kinematics, and star formation in galaxies at $z\approx 4-6$ with JWST grism surveys and $\texttt{geko}$

(2025)

Authors:

A Lola Danhaive, Sandro Tacchella, William McClymont, Brant Robertson, Stefano Carniani, Courtney Carreira, Eiichi Egami, Andrew J Bunker, Emma Curtis-Lake, Daniel J Eisenstein, Zhiyuan Ji, Benjamin D Johnson, Marcia Rieke, Natalia C Villanueva, Christopher NA Willmer, Chris Willot, Zihao Wu, Yongda Zhu
More details from the publisher

Not Just a Dot: The Complex UV Morphology and Underlying Properties of Little Red Dots

The Astrophysical Journal American Astronomical Society 992:1 (2025) 71

Authors:

P Rinaldi, N Bonaventura, GH Rieke, S Alberts, KI Caputi, WM Baker, S Baum, R Bhatawdekar, AJ Bunker, S Carniani, E Curtis-Lake, F D’Eugenio, E Egami, Z Ji, BD Johnson, K Hainline, JM Helton, X Lin, J Lyu, Z Ma, R Maiolino, PG Pérez-González, M Rieke, BE Robertson

Abstract:

We analyze 99 photometrically selected Little Red Dots (LRDs) at z ≈ 4–8 in the GOODS fields, leveraging ultradeep JADES NIRCam short-wavelength (SW) data. Among the 99 selected LRDs, we examine the morphology of 30. The remaining 69 appear predominantly compact, with sizes ≲400 pc and no extended components even in stacked SW images. However, their unresolved nature may partly reflect current depth limitations, which could prevent the detection of faint diffuse components. Among the 30 morphologically analyzed LRDs, 50% show multiple associated components, while the rest exhibit highly asymmetric structures, despite appearing as single sources. This diversity in rest-frame UV morphologies may point to interactions or strong internal feedback. We find median stellar masses of log10(M⋆/M⊙)=9.07−0.08+0.11 for pure stellar models with AV≈1.16−0.21+0.11 mag, and log10(M⋆/M⊙)=9.67−0.27+0.17 for models including active galactic nuclei (AGNs) with AV≈2.74−0.71+0.55 mag, in line with recent studies suggesting higher masses and dust content for AGN-fitted LRDs. NIRSpec spectra are available for 15 sources, six of which are also in the morphological sample. Broad Hα is detected in 40% (FWHM = 1200–2900 km s−1), and one source shows broad Hβ emission. Emission line ratios indicate a composite nature, consistent with both AGN and stellar processes. Altogether, these results suggest that LRDs are a mixed population, and their rest-frame UV morphology reflects this complexity. Morphological studies of larger samples could provide a new way to understand what drives their properties and evolution.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet