Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Andrew Bunker

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
Andy.Bunker@physics.ox.ac.uk
Telephone: 01865 (2)83126
Denys Wilkinson Building, room 702
  • About
  • Publications

JWST/NIRSpec insights into the circumnuclear region of Arp 220: A detailed kinematic study

Astronomy & Astrophysics EDP Sciences 693 (2025) a36

Authors:

Lorenzo Ulivi, Michele Perna, Isabella Lamperti, Santiago Arribas, Giovanni Cresci, Cosimo Marconcini, Bruno Rodríguez Del Pino, Torsten Böker, Andrew J Bunker, Matteo Ceci, Stéphane Charlot, Francesco D’Eugenio, Katja Fahrion, Roberto Maiolino, Alessandro Marconi, Miguel Pereira-Santaella
More details from the publisher

Photometric detection at 7.7 μm of a galaxy beyond redshift 14 with JWST/MIRI.

Nat Astron 9:5 (2025) 729-740

Authors:

Jakob M Helton, George H Rieke, Stacey Alberts, Zihao Wu, Daniel J Eisenstein, Kevin N Hainline, Stefano Carniani, Zhiyuan Ji, William M Baker, Rachana Bhatawdekar, Andrew J Bunker, Phillip A Cargile, Stéphane Charlot, Jacopo Chevallard, Francesco D'Eugenio, Eiichi Egami, Benjamin D Johnson, Gareth C Jones, Jianwei Lyu, Roberto Maiolino, Pablo G Pérez-González, Marcia J Rieke, Brant Robertson, Aayush Saxena, Jan Scholtz, Irene Shivaei, Fengwu Sun, Sandro Tacchella, Lily Whitler, Christina C Williams, Christopher NA Willmer, Chris Willott, Joris Witstok, Yongda Zhu

Abstract:

The James Webb Space Telescope (JWST) has spectroscopically confirmed numerous galaxies at z > 10. While weak rest-frame ultraviolet emission lines have only been seen in a handful of sources, the stronger rest-frame optical emission lines are highly diagnostic and accessible at mid-infrared wavelengths with the Mid-Infrared Instrument (MIRI) of JWST. We report the photometric detection of the distant spectroscopically confirmed galaxy JADES-GS-z14-0 at z = 14.3 2 - 0.20 + 0.08 with MIRI at 7.7 μm. The most plausible solution for the stellar-population properties is that this galaxy contains half a billion solar masses in stars with a strong burst of star formation in the most recent few million years. For this model, at least one-third of the flux at 7.7 μm originates from the rest-frame optical emission lines Hβ and/or [O iii]λ λ4959, 5007. The inferred properties of JADES-GS-z14-0 suggest rapid mass assembly and metal enrichment during the earliest phases of galaxy formation. This work demonstrates the unique power of mid-infrared observations in understanding galaxies at the redshift frontier.
More details from the publisher
More details

GA-NIFS: interstellar medium properties and tidal interactions in the evolved massive merging system B14-65666 at z = 7.152

(2024)

Authors:

Gareth C Jones, Rebecca Bowler, Andrew J Bunker, Santiago Arribas, Stefano Carniani, Stephane Charlot, Michele Perna, Bruno Rodríguez Del Pino, Hannah Übler, Chris J Willott, Jacopo Chevallard, Giovanni Cresci, Eleonora Parlanti, Jan Scholtz, Giacomo Venturi
More details from the publisher
Details from ArXiV

A dormant overmassive black hole in the early Universe

Nature Nature Research 636:8043 (2024) 594-597

Authors:

Ignas Juodžbalis, Roberto Maiolino, William M Baker, Sandro Tacchella, Jan Scholtz, Francesco D’Eugenio, Joris Witstok, Raffaella Schneider, Alessandro Trinca, Rosa Valiante, Christa DeCoursey, Mirko Curti, Stefano Carniani, Jacopo Chevallard, Anna de Graaff, Santiago Arribas, Jake S Bennett, Martin A Bourne, Andrew J Bunker, Stéphane Charlot, Brian Jiang, Sophie Koudmani, Michele Perna, Brant Robertson

Abstract:

Recent observations have found a large number of supermassive black holes already in place in the first few hundred million years after the Big Bang, many of which seem to be overmassive relative to their host galaxy stellar mass when compared with local relation1, 2, 3, 4, 5, 6, 7, 8–9. Several different models have been proposed to explain these findings, ranging from heavy seeds to light seeds experiencing bursts of high accretion rate10, 11, 12, 13, 14, 15–16. Yet, current datasets are unable to differentiate between these various scenarios. Here we report the detection, from the JADES survey, of broad Hα emission in a galaxy at z = 6.68, which traces a black hole with a mass of about 4 × 108M⊙ and accreting at a rate of only 0.02 times the Eddington limit. The black hole to host galaxy stellar mass ratio is about 0.4—that is, about 1,000 times above the local relation—whereas the system is closer to the local relations in terms of dynamical mass and velocity dispersion of the host galaxy. This object is most likely an indication of a much larger population of dormant black holes around the epoch of reionization. Its properties are consistent with scenarios in which short bursts of super-Eddington accretion have resulted in black hole overgrowth and massive gas expulsion from the accretion disk; in between bursts, black holes spend most of their life in a dormant state.
More details from the publisher
Details from ORA
More details

Galaxy Activity, Torus, and Outflow Survey (GATOS). Black hole mass estimation using machine learning

Astronomy & Astrophysics EDP Sciences (2024)

Authors:

R Poitevineau, F Combes, S Garcia-Burillo, D Cornu, A Alonso Herrero, C Ramos Almeida, A Audibert, E Bellocchi, PG Boorman, AJ Bunker, R Davies, T Díaz-Santos, I García-Bernete, B García-Lorenzo, O González-Martín, EKS Hicks, SF Hönig, LK Hunt, M Imanishi, M Pereira-Santaella, C Ricci, D Rigopoulou, DJ Rosario, D Rouan, M Villar Martin, M Ward
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet