The Atlas3D project - XIX. The hot-gas content of early-type galaxies: fast versus slow rotators
(2013)
A Herschel*-ATLAS study of dusty spheroids: Probing the minor-merger process in the local Universe
Monthly Notices of the Royal Astronomical Society 435:2 (2013) 1463-1468
Abstract:
We use multiwavelength (0.12-500 μm) photometry from Herschel-ATLAS, WISE, UKIDSS, SDSS and GALEX to study 23 nearby spheroidal galaxies with prominent dust lanes (DLSGs). DLSGs are considered to be remnants of recent minor mergers, making them ideal laboratories for studying both the interstellar medium (ISM) of spheroids and minor-merger-driven star formation in thenearby Universe. The DLSGs exhibit star formation rates (SFRs) between 0.01and 10M⊙ yr-1 with a median of 0.26M⊙ yr-1 (a factor of 3.5 greater thanthe average SG). The median dust mass, dust-to-stellar mass ratio and dust temperature in these galaxies are around 107.6M⊙, ≈0.05 per cent and ≈19.5K, respectively. The dust masses are at least a factor of 50 greater than that expected from stellar mass loss and, like the SFRs, show no correlationwith galaxy luminosity, suggesting that both the ISM and the star formationhave external drivers. Adopting literature gas-to-dust ratios and star formation histories derived from fits to the panchromatic photometry, we estimate that the median current and initial gasto- stellar mass ratios in these systems are ≈4 and ≈7 per cent, respectively. If, as indicated by recent work, minor mergers that drive star formation in spheroids with (NUV - r) > 3.8 (the colour range of our DLSGs) have stellar mass ratios between 1:6 and 1:10, then the satellite gas fractions are likely =50 per cent. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Discovery of a giant HI tail in the galaxy group HCG 44
Monthly Notices of the Royal Astronomical Society 428:1 (2013) 370-380
Abstract:
We report the discovery of a giant HI tail in the intragroup medium of HCG 44 as part of the ATLAS3D survey. The tail is ~300 kpc long in projection and contains ~5 × 108 M ⊙of HI. We detect no diffuse stellar light at the location of the tail down to ~28.5 mag arcsec-2 in g band. We speculate that the tail might have formed as gas was stripped from the outer regions of NGC 3187 (a member of HCG 44) by the group tidal field. In this case, a simple model indicates that about 1/3 of the galaxy's HI was stripped during a time interval of <1 Gyr. Alternatively, the tail may be the remnant of an interaction between HCG 44 and NGC 3162, a spiral galaxy now ~650 kpc away from the group. Regardless of the precise formation mechanism, the detected HI tail shows for the first time direct evidence of gas stripping in HCG 44. It also highlights that deep HI observations over a large field are needed to gather a complete census of this kind of events inthe local Universe.©2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.ISM chemistry in metal-rich environments: Molecular tracers of metallicity
Monthly Notices of the Royal Astronomical Society 433:2 (2013) 1659-1674