ISM chemistry in metal-rich environments: Molecular tracers of metallicity
Monthly Notices of the Royal Astronomical Society 433:2 (2013) 1659-1674
Abstract:
In this paper we use observations of molecular tracers inmetal-rich and a-enhanced galaxies to study the effect of abundance changes on molecular chemistry. We selected a sample of metalrich spiral and star-bursting objects from the literature, and present here new data for a sample of early-type galaxies (ETGs) previously studied by Crocker et al. We conducted the first survey of carbon monosulphide (CS) and methanol emission in ETGs, detecting seven objects in at least one CS transition, and methanol emission in five ETGs. We find that ETGs whose gas is dominated by ionization from star formation have enhanced CS emission, compared to their hydrogen cyanide (HCN) emission, supporting the hypothesis that CS is a better tracer of dense star-forming gas than HCN. We suggest that the methanol emission in these sources is driven by dust mantle destruction due to ionization from high-mass star formation in dense molecular clouds, but cannot rule out a component due to shocks dominating in some sources. We construct rotation diagrams for each early-type source where at least two transitions of a given species were detected. The rotational temperatures we derive for linear molecules vary between 3 and 9 K, with the majority of sources having rotational temperatures around 5 K. Despite the large uncertainty inherent in this method, the derived source-averaged CS and methanol column densities are similar to those found by other authors for normal spiral and starburst galaxies. This may suggest dense clouds are little affected by the differences between early-and late-type galaxies. Finally, we used the total column density ratios for both our ETG and literature galaxy sample to show for the first time that some molecular tracers do seem to show systematic variations that appear to correlate with metallicity, and that these variations roughly match those predicted by chemical models. Using this fact, the chemical models of Bayet et al. and assumptions about the optical depth we are able to roughly predict the metallicity of our spiral and ETG sample, with a scatter of ~0.3 dex. We provide the community with linear approximations to the relationship between the HCN and CS column density ratio and metallicity. Further study will clearly be required to determine if this, or any, molecular tracer can be used to robustly determine gas-phase metallically, but that a relationship exists at all suggests that in the future it may be possible to calibrate a metallicity indicator for the molecular interstellar medium. © 2013 The Authors.The ATLAS3D project - XVIII. CARMA CO imaging survey of early-type galaxies
Monthly Notices of the Royal Astronomical Society 432:3 (2013) 1796-1844
Abstract:
We present the Combined Array for Research in Millimeter Astronomy (CARMA) ATLAS3D molecular gas imaging survey, a systematic study of the distribution and kinematics of molecular gas in CO-rich early-type galaxies. Our full sample of 40 galaxies (30 newly mapped and 10 taken from the literature) is complete to a 12CO(1-0) integrated flux of 18.5 Jy km s-1,1 and it represents the largest, best studied sample of its type to date. A comparison of the CO distribution of each galaxy to the g - r colour image (representing dust) shows that the molecular gas and dust distributions are in good agreement and trace the same underlying interstellar medium. The galaxies exhibit a variety of CO morphologies, including discs (50 per cent), rings (15 per cent), bars+rings (10 per cent), spiral arms (5 per cent) and mildly (12.5 per cent) and strongly (7.5 per cent) disrupted morphologies. There appear to be weak trends between galaxy mass and CO morphology, whereby the most massive galaxies in the sample tend to have molecular gas in a disc morphology. We derive a lower limit to the total accreted molecular gas mass across the sample of 2.48 × 1010Mȯ, or approximately 8.3 × 108Mȯ per minor merger within the sample, consistent with minor merger stellar mass ratios. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.The ATLAS3D project - XVI. Physical parameters and spectral line energy distributions of the molecular gas in gas-rich early-type galaxies
Monthly Notices of the Royal Astronomical Society 432:3 (2013) 1742-1767
Abstract:
We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated 12CO (1-0, 2-1), 13CO (1-0, 2-1), HCN (1-0) and HCO+ (1-0) observations and new 12 CO (3-2) single-dish data. From these, we derive for the first time the average kinetic temperature, H2 volume density and column density of the emitting gas in a significant sample of ETGs, using a non-local thermodynamical equilibrium theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO+ lines, the two sets of lines are treated separately. For most of the molecular gas-rich ETGs studied here, the CO transitions can be reproduced with kinetic temperatures of 10-20 K, H2 volume densities of 103-4 cm-3 and CO column densities of 1018-20 cm-2. The physical conditions corresponding to the HCN and HCO+ gas component have large uncertainties and must be considered as indicative only. We also compare for the first time the predicted CO spectral line energy distributions and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation conditions in 13 of our 18 ETGs appear analogous to those in the centre of theMilky Way, hence the star formation activity driving these conditions is likely of a similar strength and nature. Such results have never been obtained before for ETGs and open a new window to explore further star-formation processes in the Universe. The conclusions drawn should nevertheless be considered carefully, as they are based on a limited number of observations and on a simple model. In the near future, with higher CO transition observations, it should be possible to better identify the various gas components present in ETGs, as well as more precisely determine their associated physical conditions. To achieve these goals, we show here from our theoretical study, that mid-J CO lines [such as the 12CO (6-5) line] are particularly useful. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.The ATLAS3D project - XV. Benchmark for early-type galaxies scaling relations from 260 dynamical models: Mass-to-light ratio, dark matter, fundamental plane and mass plane
Monthly Notices of the Royal Astronomical Society 432:3 (2013) 1709-1741
Abstract:
We study the volume-limited and nearly mass-selected (stellar mass Mstars ≳ 6 × 109 M⊙) ATLAS3D sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). We construct detailed axisymmetric dynamical models (Jeans Anisotropic MGE), which allow for orbital anisotropy, include a dark matter halo and reproduce in detail both the galaxy images and the high-quality integral-field stellar kinematics out to about 1Re, the projected half-light radius. We derive accurate total mass-to-light ratios (M/L)e and dark matter fractions fDM, within a sphere of radius r = Re centred on the galaxies.We alsomeasure the stellar (M/L)stars and derive a median dark matter fraction fDM = 13 per cent in our sample. We infer masses MJAM = L × (M/L)e ≈ 2 ×M1/2, where M1/2 is the total mass within a sphere enclosing half of the galaxy light. We find that the thin two-dimensional subset spanned by galaxies in the (MJAM, σe,Rmaje ) coordinates system, which we call the Mass Plane (MP) has an observed rms scatter of 19 per cent, which implies an intrinsic one of 11 per cent. Here, Rmaje is the major axis of an isophote enclosing half of the observed galaxy light, while σe is measuredwithin that isophote. The MP satisfies the scalar virial relation MJAM ∝ σ2e Rmaje within our tight errors. This show that the larger scatter in the Fundamental Plane (FP) (L, σe, Re) is due to stellar population effects [including trends in the stellar initial mass function (IMF)]. It confirms that the FP deviation from the virial exponents is due to a genuine (M/L)e variation. However, the details of how both Re and σe are determined are critical in defining the precise deviation from the virial exponents. The main uncertainty in masses or M/L estimates using the scalar virial relation is in the measurement of Re. This problem is already relevant for nearby galaxies and may cause significant biases in virial mass and size determinations at high redshift. Dynamical models can eliminate these problems.We revisit the (M/L)e-σe relation, which describes most of the deviations between the MP and the FP. The best-fitting relation is (M/L)e ∝ σ0.72e (r band). It provides an upper limit to any systematic increase of the IMF mass normalization with σe. The correlation is more shallow and has smaller scatter for slow rotating systems or for galaxies in Virgo. For the latter, when using the best distance estimates, we observe a scatter in (M/L)e of 11 per cent, and infer an intrinsic one of 8 per cent. We perform an accurate empirical study of the link between se and the galaxies circular velocity Vcirc within 1Re (where stars dominate) and find the relation max (Vcirc) ≈ 1.76 × σe, which has an observed scatter of 7 per cent. The accurate parameters described in this paper are used in the companion Paper XX (Cappellari et al.) of this series to explore the variation of global galaxy properties, including the IMF, on the projections of the MP. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.The ATLAS3D project - XXI. Correlations between gradients of local escape velocity and stellar populations in early-type galaxies
Monthly Notices of the Royal Astronomical Society 432:3 (2013) 1894-1913