Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Martin Bureau

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
martin.bureau@physics.ox.ac.uk
Telephone: 01865 (2)73377
Denys Wilkinson Building, room 701
Home page
ORCID
  • About
  • Publications

The SAURON project – XIX. Optical and near-infrared scaling relations of nearby elliptical, lenticular and Sa galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 417:3 (2011) 1787-1816

Authors:

J Falcón-Barroso, G van de Ven, RF Peletier, M Bureau, H Jeong, R Bacon, M Cappellari, RL Davies, PT de Zeeuw, E Emsellem, D Krajnović, H Kuntschner, RM McDermid, M Sarzi, KL Shapiro, RCE van den Bosch, G van der Wolk, A Weijmans, S Yi
More details from the publisher

The ATLAS3D project - X. On the origin of the molecular and ionized gas in early-type galaxies

Monthly Notices of the Royal Astronomical Society 417:2 (2011) 882-899

Authors:

TA Davis, K Alatalo, M Sarzi, M Bureau, LM Young, L Blitz, P Serra, AF Crocker, D Krajnović, RM McDermid, M Bois, F Bournaud, M Cappellari, RL Davies, PA Duc, PT de Zeeuw, E Emsellem, S Khochfar, H Kuntschner, PY Lablanche, R Morganti, T Naab, T Oosterloo, N Scott, AM Weijmans

Abstract:

We make use of interferometric CO and Hi observations, and optical integral-field spectroscopy from the ATLAS3D survey, to probe the origin of the molecular and ionized interstellar medium (ISM) in local early-type galaxies. We find that 36 ± 5 per cent of our sample of fast-rotating early-type galaxies have their ionized gas kinematically misaligned with respect to the stars, setting a strong lower limit on the importance of externally acquired gas (e.g. from mergers and cold accretion). Slow rotators have a flat distribution of misalignments, indicating that the dominant source of gas is external. The molecular, ionized and atomic gas in all the detected galaxies are always kinematically aligned, even when they are misaligned from the stars, suggesting that all these three phases of the ISM share a common origin. In addition, we find that the origin of the cold and warm gas in fast-rotating early-type galaxies is strongly affected by environment, despite the molecular gas detection rate and mass fractions being fairly independent of group/cluster membership. Galaxies in dense groups and the Virgo cluster nearly always have their molecular gas kinematically aligned with the stellar kinematics, consistent with a purely internal origin (presumably stellar mass loss). In the field, however, kinematic misalignments between the stellar and gaseous components indicate that at least 42 ± 5 per cent of local fast-rotating early-type galaxies have their gas supplied from external sources. When one also considers evidence of accretion present in the galaxies' atomic gas distributions, ≳46 per cent of fast-rotating field ETGs are likely to have acquired a detectable amount of ISM from accretion and mergers. We discuss several scenarios which could explain the environmental dichotomy, including preprocessing in galaxy groups/cluster outskirts and the morphological transformation of spiral galaxies, but we find it difficult to simultaneously explain the kinematic misalignment difference and the constant detection rate. Furthermore, our results suggest that galaxy mass may be an important independent factor associated with the origin of the gas, with the most massive fast-rotating galaxies in our sample (MK≲-24mag; stellar mass of ≈8 × 1010 M⊙) always having kinematically aligned gas. This mass dependence appears to be independent of environment, suggesting it is caused by a separate physical mechanism. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
More details from the publisher
More details

The ATLAS3D project - VIII. Modelling the formation and evolution of fast and slow rotator early-type galaxies within ΛCDM

Monthly Notices of the Royal Astronomical Society 417:2 (2011) 845-862

Authors:

S Khochfar, E Emsellem, P Serra, M Bois, K Alatalo, R Bacon, L Blitz, F Bournaud, M Bureau, M Cappellari, RL Davies, TA Davis, PT de Zeeuw, PA Duc, D Krajnović, H Kuntschner, PY Lablanche, RM McDermid, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, AM Weijmans, LM Young

Abstract:

We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical Λcold dark matter (ΛCDM) scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed via λR. Within our model we reproduce the fraction of fast and slow rotators as a function of magnitude in the ATLAS3D survey, assuming that fast-rotating ETGs have at least 10 per cent of their total stellar mass in a disc component. In agreement with ATLAS3D observations we find that slow rotators are predominantly galaxies with M* > 1010.5M⊙ contributing ~20 per cent to the overall ETG population. We show in detail that the growth histories of fast and slow rotators are different, supporting the classification of ETGs into these two categories. Slow rotators accrete between ~50 and 90 per cent of their stellar mass from satellites and their most massive progenitors have on average up to three major mergers during their evolution. Fast rotators in contrast accrete less than 50 per cent and have on average less than one major merger in their past. We find that the underlying physical reason for the different growth histories is the slowing down and ultimately complete shut-down of gas cooling in massive galaxies. Once cooling and associated star formation in disc stop, galaxies grow via infall from satellites. Frequent minor mergers thereby destroy existing stellar discs via violent relaxation and also tend to lower the specific angular momentum of the main stellar body, lowering λR into the slow rotator regime. On average, the last gas-rich major merger interaction in slow rotators happens at z > 1.5, followed by a series of minor mergers. These results support the idea that kinematically decoupled cores (KDC) form during gas-rich major mergers at high z followed by minor mergers, which build-up the outer layers of the remnant, and make remnants that are initially too flat compared to observations become rounder. Fast rotators are less likely to form such KDCs due to the fact that they have on average less than one major merger in their past. Fast rotators in our model have different formation paths. The majority, 78 per cent, has bulge-to-total stellar mass ratios (B/T) > 0.5 and managed to grow stellar discs due to continued gas cooling or bulges due to frequent minor mergers. The remaining 22 per cent live in high-density environments and consist of low B/T galaxies with gas fractions below 15 per cent, that have exhausted their cold gas reservoir and have no hot halo from which gas can cool. These fast rotators most likely resemble the flattened disc-like fast rotators in the ATLAS3D survey. Our results predict that ETGs can change their state from fast to slow rotator and vice versa, while the former is taking place predominantly at low z (z < 2), the latter is occurring during cosmic epochs when cooling times are short and galaxies gas-rich. We predict that the ratio of the number density of slow to fast rotators is a strong function of redshift, with massive (>1010M⊙) fast rotators being more than one order of magnitude more frequent at z~ 2. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
More details from the publisher
More details

The SAURON Project - XX. The Spitzer [3.6] - [4.5] colour in early-type galaxies: colours, colour gradients and inverted scaling relations

(2011)

Authors:

Reynier F Peletier, Elif Kutdemir, Guido van der Wolk, Jesus Falcon-Barroso, Roland Bacon, Martin Bureau, Michele Cappellari, Roger L Davies, P Tim de Zeeuw, Eric Emsellem, Davor Krajnovic, Harald Kuntschner, Richard M McDermid, Marc Sarzi, Nicholas Scott, Kristen L Shapiro, Remco CE van den Bosch, Glenn van de Ven
More details from the publisher

The star-formation histories of early-type galaxies from ATLAS3D

Proceedings of the International Astronomical Union Cambridge University Press (CUP) 7:S284 (2011) 244-247

Authors:

Richard M McDermid, Katherine Alatalo, Leo Blitz, Maxime Bois, Frédéric Bournaud, Martin Bureau, Michele Cappellari, Alison F Crocker, Roger L Davies, Tim A Davis, PT de Zeeuw, Pierre-Alain Duc, Eric Emsellem, Sadegh Khochfar, Davor Krajnović, Harald Kuntschner, Pierre-Yves Lablanche, Rafaella Morganti, Thorsten Naab, Tom Oosterloo, Marc Sarzi, Nic Scott, Paolo Serra, Anne-Marie Weijmans, Lisa M Young
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 46
  • Page 47
  • Page 48
  • Page 49
  • Current page 50
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet