Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Philip Burrows

Professor of Physics

Sub department

  • Particle Physics
Philip.Burrows@physics.ox.ac.uk
Telephone: 01865 (2)73451
Denys Wilkinson Building, room 615a
  • About
  • Publications

A compact water window X-ray source based on inverse Compton scattering

Proceedings of the 15th International Particle Accelerator Conference JACoW Publishing (2024) 441-444

Abstract:

X-rays in the water window (2.33 nm to 4.40 nm wavelength) can be used to provide high quality images of wet biological samples. Given the limited availability of current generation light sources in this energy range, table-top water window X-ray sources have been proposed as alternatives. We present start-to-end simulations in RF-Track of a water window X-ray source based on inverse Compton scattering. A brazing-free electron gun with a maximum beam energy of 7 MeV is considered, providing photon energies covering the full water window range. Performance estimates for the gun operating with copper and cesium telluride cathodes are presented. The cesium telluride cathode, combined with a burst mode Fabry-Perot cavity, allows for an increase in flux by orders of magnitude compared to single bunch copper cathode operation. A beamline of 1 m was determined to be sufficient to produce a high photon flux.
More details from the publisher
Details from ORA

ATF2-3 hardware upgrade and new experimental results to maximize luminosity potential of linear colliders

Proceedings of the 15th International Particle Accelerator Conference JACoW Publishing (2024) 996-999

Abstract:

The ATF2-3 beamline is the only facility in the world for testing the Final Focus Beamline of linear colliders and is essential for the ILC and the CLIC projects. A vertical electron beam size of 41 nm (within 10% of the target), a closed-loop intra-bunch feedback of latency 133 ns, and direct stabilization of the beam position at the Interaction Point to 41 nm (limited by IP BPM resolution) have all been achieved at ATF2. These results fulfilled the two main ATF2 design goals, but were obtained with reduced aberration optics and a bunch population of approximately 10% of the nominal value of 10^10 electrons. Recent studies indicate that the beam degradation with the beam intensity is due to the effects of wakefields. To overcome this intensity limitation, hardware upgrades including new vacuum chambers, magnets, IP-Beam Size Monitor laser, cavity BPMs, wakefield mitigation station, as well as a comprehensive R&D program to maximize the luminosity potential are being pursued in the framework of the ILC Technology Network. This new R&D program focuses on the study of wakefield mitigation techniques, correction of higher-order aberrations, tuning strategies, including AI techniques, as well as beam instrumentation issues, such as the BPMs, advanced Cherenkov Diffractive Radiation monitors, and fast feedback systems, among others. This paper summarizes the hardware upgrades, the R&D program and the results of the Fall 2023-Winter 2024 experimental campaign performed in ATF2-3.
More details from the publisher
Details from ORA

Beam studies using a Cherenkov diffraction based beam position monitor for AWAKE

Proceedings of the 15th International Particle Accelerator Conference JACoW Publishing (2024) 2327-2330

Abstract:

A beam position monitor based on Cherenkov diffraction radiation (ChDR) is being investigated as a way to disentangle the signals generated by the electromagnetic fields of a short-pulse electron bunch from a long proton bunch co-propagating in the AWAKE plasma acceleration experiment at CERN. These ChDR BPMs have undergone renewed testing under a variety of beam conditions with proton and electron bunches in the AWAKE common beamline, at 3 different frequency ranges between 20-110 GHz to quantify the effectiveness of discriminating the electron beam position with and without proton bunches present. These results indicate an increased sensitivity to the electron beam position in the highest frequency bands. Furthermore, high frequency studies investigating the proton bunch spectrum show that a much higher frequency regime is needed to exclude the proton signal than previously expected.
More details from the publisher
Details from ORA

Bubble-beam accelerators: breaking the paradigm

Proceedings of the 15th International Particle Accelerator Conference JACoW Publishing (2024) 1957-1960

Abstract:

Most particle accelerators utilize beams with a charge density concentrated in the center of the bunch in real 3-dimensional space and the 6-dimensional phase space. In this work, by enhancing the space-charge forces in the photo-cathode injector of the Compact Linear Electron Accelerator for Research (CLEAR) at CERN, we produce electron bunches with a “bubble-like” shape, with a charge density mostly concentrated on the outside shell. We demonstrate that the dynamics of such beams can be tailored to achieve stable uniformity in the coordinate and momentum transverse planes simultaneously. This would allow reaching a uniform dose distribution without a severe loss of particles which is of the great interest in the irradiation community. Additionally, we investigate the potential benefits of bubble-beams across several accelerator pillars: for driving light sources, for advanced acceleration technologies, and for particle colliders.
More details from the publisher
Details from ORA

First studies on error mitigation by interaction point fast feedback systems for FCC-ee

Proceedings of the 15th International Particle Accelerator Conference JACoW Publishing (2024) 3322-3325

Abstract:

During operation, the Future Circular electron-positron Collider (FCC-ee) will be subject to vibrations from mechanical sources and ground motion, resulting in errors with respect to the closed orbit. To achieve physics performance, luminosity and beam lifetime must be kept to design specifications. To correct for errors at the IPs, a fast feedback system is required. In this paper, we present the tolerances for the allowable beam offsets at the interaction points (IPs) and propose a fast feedback system to address these errors, with the methods of detecting and correcting errors discussed.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet