The status of the interaction region design and machine detector interface of the FCC-ee
Proceedings of the 14th International Particle Accelerator Conference JACoW Publishing (2023) 256-259
Abstract:
We present the latest development for the FCC-ee interaction region. It represents a major challenge for the FCC-ee collider, which has to achieve extremely high luminosity over a wide range of centre-of-mass energies. The FCC-ee will host two or four high-precision experiments. The machine parameters have to be well controlled and the design of the machine-detector-interface has to be carefully optimized. In particular, the complex final focus hosted in the detector region has to be carefully designed, and the impact of beam losses and of any type of radiation generated in the interaction region, including beamstrahlung, have to be simulated in detail. We discuss mitigation measures and the expected impact of beam losses and radiation on the detector background. We also report the progress of the mechanical model of the interaction region layout, including the engineering design of the central beampipe, and other MDI components.Towards a muon collider
European Physical Journal C: Particles and Fields Springer Nature 83:9 (2023) 864
Abstract:
A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.Development of the self-modulation instability of a relativistic proton bunch in plasma
Physics of Plasmas AIP Publishing 30 (2023) 083104
Abstract:
Self-modulation is a beam-plasma instability that is useful to drive large-amplitude wakefields with bunches much longer than the plasma skin depth. We present experimental results showing that, when increasing the ratio between the initial transverse size of the bunch and the plasma skin depth, the instability occurs later along the bunch, or not at all, over a fixed plasma length, because the amplitude of the initial wakefields decreases. We show cases for which self-modulation does not develop and we introduce a simple model discussing the conditions for which it would not occur after any plasma length. Changing bunch size and plasma electron density also changes the growth rate of the instability. We discuss the impact of these results on the design of a particle accelerator based on the self-modulation instability seeded by a relativistic ionization front, such as the future upgrade of the AWAKE experiment.RF techniques for spill quality improvement in the SPS
JACoW Publishing (2023)
Abstract:
The CERN Super Proton Synchrotron (SPS) aims at providing stable proton spills of several seconds to the North Area (NA) fixed target experiments via third-integer resonant slow extraction. However, low-frequency power converter ripple (primarily at 50 and 100 Hz) and high-frequency structures (mainly at harmonics of the revolution frequency) modulate the extracted intensity, which can compromise the performance of the data acquisition systems of the NA experiments. In this contribution, the implementation of Radio Frequency (RF) techniques for spill quality improvement is explored, with particular focus on empty bucket channelling. It is shown that both the main RF systems (at 200 and 800 MHz) can be successfully exploited to improve the SPS slow extraction.Design of the proton and electron transfer lines for AWAKE Run 2c
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Elsevier 1049 (2023) 168094