Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Simon Calcutt

Emeritus

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary atmosphere observation analysis
  • Solar system
  • Space instrumentation
  • Planetary surfaces
simon.calcutt@physics.ox.ac.uk
Telephone: 01865 (2)72916
Atmospheric Physics Clarendon Laboratory, room 308
  • About
  • Publications

Exploring the Saturn system in the thermal infrared: The composite infrared spectrometer

Space Science Reviews 115:1-4 (2005) 169-297

Authors:

FM Flasar, VG Kunde, MM Abbas, RK Achterberg, P Ade, A Barucci, B Bézard, GL Bjoraker, JC Brasunas, S Calcutt, R Carlson, CJ Césarsky, BJ Conrath, A Coradini, R Courtin, A Coustenis, S Edberg, S Edgington, C Ferrari, T Fouchet, D Gautier, PJ Gierasch, K Grossman, P Irwin, DE Jennings, E Lellouch, AA Mamoutkine, A Marten, JP Meyer, CA Nixon, GS Orton, TC Owen, JC Pearl, R Prangé, F Raulin, PL Read, PN Romani, RE Samuelson, ME Segura, MR Showalter, AA Simon-Miller, MD Smith, JR Spencer, LJ Spilker, FW Taylor

Abstract:

The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm- 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm- 1. The far infrared portion of the spectrum (10-600 cm - 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600-1100 cm- 1, 1100-1400 cm- 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS's ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn's icy satellites. It will similarly map Saturn's rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved. © 2004 Kluwer Academic Publishers.
More details from the publisher
More details

Retrievals of Jovian tropospheric phosphine from Cassini/CIRS

Icarus 172 (2004) 37-49

Authors:

PG Irwin, P. Parrish, T. Fouchet, S. B. Calcutt
More details from the publisher

Search for spatial variation in the jovian 15N/14N ratio from Cassini/CIRS observations

Icarus 172 (2004) 50-58

Authors:

SB Calcutt, Fouchet, Irwin, Parrish
More details from the publisher
More details

Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment.

Science 305:5690 (2004) 1582-1586

Authors:

VG Kunde, FM Flasar, DE Jennings, B Bézard, DF Strobel, BJ Conrath, CA Nixon, GL Bjoraker, PN Romani, RK Achterberg, AA Simon-Miller, P Irwin, JC Brasunas, JC Pearl, MD Smith, GS Orton, PJ Gierasch, LJ Spilker, RC Carlson, AA Mamoutkine, SB Calcutt, PL Read, FW Taylor, T Fouchet, P Parrish, A Barucci, R Courtin, A Coustenis, D Gautier, E Lellouch, A Marten, R Prangé, Y Biraud, C Ferrari, TC Owen, MM Abbas, RE Samuelson, F Raulin, P Ade, CJ Césarsky, KU Grossman, A Coradini

Abstract:

The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.
More details from the publisher
More details

Upper limits on hydrogen halides in Jupiter from Cassini/CIRS observations

Icarus 170:1 (2004) 237-241

Authors:

T Fouchet, G Orton, PGJ Irwin, SB Calcutt, CA Nixon

Abstract:

We have determined the following upper limits for the mole fraction of hydrogen halides in Jupiter's atmosphere from Cassini/CIRS observations: [HF] <2.7×10-11, [HCl] <2.3×10-9, [HBr]<1.0×10-9, [HI] <7.6×10-9. These limits are smaller than solar composition for HF and HCl, and support the halogens' condensation in ammonium salts predicted by thermochemical models for the upper jovian troposphere. © 2004 Published by Elsevier Inc.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Current page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet