Artificial intelligence for quantum computing
Nature Communications Nature Research 16:1 (2025) 10829
Abstract:
Artificial intelligence (AI) advancements over the past few years have had an unprecedented and revolutionary impact across everyday application areas. Its significance also extends to technical challenges within science and engineering, including the nascent field of quantum computing (QC). The counterintuitive nature and high-dimensional mathematics of QC make it a prime candidate for AI’s data-driven learning capabilities, and in fact, many of QC’s biggest scaling challenges may ultimately rest on developments in AI. However, bringing leading techniques from AI to QC requires drawing on disparate expertise from arguably two of the most advanced and esoteric areas of computer science. Here we aim to encourage this cross-pollination by reviewing how state-of-the-art AI techniques are already advancing challenges across the hardware and software stack needed to develop useful QC - from device design to applications. We then close by examining its future opportunities and obstacles in this space.Double-Bracket Algorithmic Cooling
(2025)
Characterization of nanostructural imperfections in superconducting quantum circuits
Materials for Quantum Technology IOP Publishing 5:3 (2025) 035201
Abstract:
Decoherence in superconducting quantum circuits, caused by loss mechanisms like material imperfections and two-level system (TLS) defects, remains a major obstacle to improving the performance of quantum devices. In this work, we present atomic-level characterization of cross-sections of a Josephson junction and a spiral resonator to assess the quality of critical interfaces. Employing scanning transmission electron microscopy combined with energy-dispersive x-ray spectroscopy and electron-energy loss spectroscopy, we identify structural imperfections associated with oxide layer formation and carbon-based contamination, and correlate these imperfections to the patterning and etching steps in the fabrication process and environmental exposure. These results suggest that TLS imperfections at critical interfaces significantly contribute to limiting device performance, emphasizing the need for an improved fabrication process.Intrinsic Multi-Mode Interference for Passive Suppression of Purcell Decay in Superconducting Circuits
(2025)