Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Qubits

Dr Shuxiang Cao

Long Term Visitor

Research theme

  • Quantum information and computation

Sub department

  • Condensed Matter Physics

Research groups

  • Superconducting quantum devices
shuxiang.cao@physics.ox.ac.uk
Clarendon Laboratory, room 120,030
  • About
  • Publications

High coherence and low cross-talk in a tileable 3D integrated superconducting circuit architecture.

Science advances 8:16 (2022) eabl6698

Authors:

Peter A Spring, Shuxiang Cao, Takahiro Tsunoda, Giulio Campanaro, Simone Fasciati, James Wills, Mustafa Bakr, Vivek Chidambaram, Boris Shteynas, Lewis Carpenter, Paul Gow, James Gates, Brian Vlastakis, Peter J Leek

Abstract:

We report high qubit coherence as well as low cross-talk and single-qubit gate errors in a superconducting circuit architecture that promises to be tileable to two-dimensional (2D) lattices of qubits. The architecture integrates an inductively shunted cavity enclosure into a design featuring nongalvanic out-of-plane control wiring and qubits and resonators fabricated on opposing sides of a substrate. The proof-of-principle device features four uncoupled transmon qubits and exhibits average energy relaxation times T1 = 149(38) μs, pure echoed dephasing times Tϕ,e = 189(34) μs, and single-qubit gate fidelities F = 99.982(4)% as measured by simultaneous randomized benchmarking. The 3D integrated nature of the control wiring means that qubits will remain addressable as the architecture is tiled to form larger qubit lattices. Band structure simulations are used to predict that the tiled enclosure will still provide a clean electromagnetic environment to enclosed qubits at arbitrary scale.
More details from the publisher
More details
More details

Spatial Charge Sensitivity in a Multimode Superconducting Qubit

Physical Review Applied American Physical Society (APS) 17:2 (2022) 024058

Authors:

J Wills, G Campanaro, S Cao, SD Fasciati, PJ Leek, B Vlastakis
More details from the publisher

The Variational Quantum Eigensolver: a review of methods and best practices

(2021)

Authors:

Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li, Edward Grant, Leonard Wossnig, Ivan Rungger, George H Booth, Jonathan Tennyson
More details from the publisher
Details from ArXiV

Characterisation of spatial charge sensitivity in a multi-mode superconducting qubit

(2021)

Authors:

J Wills, G Campanaro, S Cao, SD Fasciati, PJ Leek, B Vlastakis
More details from the publisher

High Coherence in a Tileable 3D Integrated Superconducting Circuit Architecture

(2021)

Authors:

Peter A Spring, Shuxiang Cao, Takahiro Tsunoda, Giulio Campanaro, Simone D Fasciati, James Wills, Vivek Chidambaram, Boris Shteynas, Mustafa Bakr, Paul Gow, Lewis Carpenter, James Gates, Brian Vlastakis, Peter J Leek
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet