Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

WISDOM Project - X. The morphology of the molecular ISM in galaxy centres and its dependence on galaxy structure

Monthly Notices of the Royal Astronomical Society Oxford University Press (2022)

Authors:

Timothy A Davis, Jindra Gensior, Martin Bureau, Michele Cappellari, Woorak Choi, Jacob S Elford, JM Diederik Kruijssen, Federico Lelli, Fu-Heng Liang, Lijie Liu, Ilaria Ruffa, Toshiki Saito, Marc Sarzi, Andreas Schruba, Thomas G Williams

Abstract:

We use high-resolution maps of the molecular interstellar medium (ISM) in the centres of eighty-six nearby galaxies from the millimetre-Wave Interferometric Survey of Dark Object Masses (WISDOM) and Physics at High Angular Resolution in Nearby GalaxieS (PHANGS) surveys to investigate the physical mechanisms setting the morphology of the ISM at molecular cloud scales. We show that early-type galaxies tend to have smooth, regular molecular gas morphologies, while the ISM in spiral galaxy bulges is much more asymmetric and clumpy when observed at the same spatial scales. We quantify these differences using non-parametric morphology measures (Asymmetry, Smoothness and Gini), and compare these measurements with those extracted from idealised galaxy simulations. We show that the morphology of the molecular ISM changes systematically as a function of various large scale galaxy parameters, including galaxy morphological type, stellar mass, stellar velocity dispersion, effective stellar mass surface density, molecular gas surface density, star formation efficiency and the presence of a bar. We perform a statistical analysis to determine which of these correlated parameters best predicts the morphology of the ISM. We find the effective stellar mass surface (or volume) density to be the strongest predictor of the morphology of the molecular gas, while star formation and bars maybe be important secondary drivers. We find that gas self-gravity is not the dominant process shaping the morphology of the molecular gas in galaxy centres. Instead effects caused by the depth of the potential well such as shear, suppression of stellar spiral density waves and/or inflow affect the ability of the gas to fragment.
More details from the publisher
Details from ORA
More details

WISDOM Project -- X. The morphology of the molecular ISM in galaxy centres and its dependence on galaxy structure

(2022)

Authors:

Timothy A Davis, Jindra Gensior, Martin Bureau, Michele Cappellari, Woorak Choi, Jacob S Elford, JM Diederik Kruijssen, Federico Lelli, Fu-Heng Liang, Lijie Liu, Ilaria Ruffa, Toshiki Saito, Marc Sarzi, Andreas Schruba, Thomas G Williams
More details from the publisher

SDSS-IV MaNGA: Understanding Ionized Gas Turbulence Using Integral Field Spectroscopy of 4500 Star-forming Disk Galaxies

The Astrophysical Journal American Astronomical Society 928:1 (2022) 58

Authors:

David R Law, Francesco Belfiore, Matthew A Bershady, Michele Cappellari, Niv Drory, Karen L Masters, Kyle B Westfall, Dmitry Bizyaev, Kevin Bundy, Kaike Pan, Renbin Yan
More details from the publisher
More details
More details

The Westerbork Coma Survey

Astronomy & Astrophysics EDP Sciences 659 (2022) a94

Authors:

D Cs Molnár, P Serra, T van der Hulst, TH Jarrett, A Boselli, L Cortese, J Healy, E de Blok, M Cappellari, KM Hess, GIG Józsa, RM McDermid, TA Oosterloo, MAW Verheijen
More details from the publisher
More details

SDSS-IV MaNGA: integral-field kinematics and stellar population of a sample of galaxies with counter-rotating stellar discs selected from about 4000 galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 511:1 (2022) 139-157

Authors:

Davide Bevacqua, Michele Cappellari, Silvia Pellegrini
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet