SDSS-IV MaNGA: Stellar M/L gradients and the M/L-colour relation in galaxies
Abstract:
The stellar mass-to-light ratio gradient in SDSS r-band ∇(M*/Lr) of a galaxy depends on its mass assembly history, which is imprinted in its morphology and gradients of age, metallicity, and stellar initial mass function (IMF). Taking a MaNGA sample of 2051 galaxies with stellar masses ranging from 109 to 1012M⊙ released in SDSS DR15, we focus on face-on galaxies, without merger and bar signatures, and investigate the dependence of the 2D ∇(M*/Lr) on other galaxy properties, including M*/Lr-colour relationships by assuming a fixed Salpeter IMF as the mass normalization reference. The median gradient is ∇M*/Lr ∼ −0.1 (i.e. the M*/Lr is larger at the centre) for massive galaxies, becomes flat around M* ∼ 1010M⊙ and change sign to ∇M*/Lr ∼ 0.1 at the lowest masses. The M*/Lr inside a half-light radius increases with increasing galaxy stellar mass; in each mass bin, early-type galaxies have the highest value, while pure-disc late-type galaxies have the smallest. Correlation analyses suggest that the mass-weighted stellar age is the dominant parameter influencing the M*/Lr profile, since a luminosity-weighted age is easily affected by star formation when the specific star formation rate (sSFR) inside the half-light radius is higher than 10−3 Gyr−1. With increased sSFR gradient, one can obtain a steeper negative ∇(M*/Lr). The scatter in the slopes of M*/L-colour relations increases with increasing sSFR, for example, the slope for post-starburst galaxies can be flattened to 0.45 from the global value 0.87 in the M*/L versus g − r diagram. Hence converting galaxy colours to M*/L should be done carefully, especially for those galaxies with young luminosity-weighted stellar ages, which can have quite different star formation histories.
Dynamical model of the Milky Way using APOGEE and Gaia data
Abstract:
We construct a dynamical model of the Milky Way disk from a data set that combines Gaia EDR3 and APOGEE data throughout galactocentric radii in the range 5.0 kpc ≤ R ≤ 19.5 kpc. We make use of the spherically aligned Jeans anisotropic method to model the stellar velocities and their velocity dispersions. Building upon our previous work, our model is now fitted to kinematic maps that have been extended to larger galactocentric radii due to the expansion of our data set, probing the outer regions of the Galactic disk. Our best-fitting dynamical model suggests a logarithmic density slope of αDM = −1.602 ± 0.079syst for the dark matter halo and a dark matter density of ρDM(R⊙) = (8.92 ± 0.56syst) × 10−3 M⊙ pc−3 (0.339 ± 0.022syst GeV cm3). We estimate a circular velocity at the solar radius of vcirc = (234.7 ± 1.7syst) km s−1 with a decline toward larger radii. The total mass density is ρtot(R⊙) = (0.0672 ± 0.0015syst) M⊙ pc−3 with a slope of αtot = −2.367 ± 0.047syst for 5 kpc ≤ R ≤ 19.5 kpc, and the total surface density is Σ(R⊙, ∣z∣ ≤ 1.1 kpc) = (55.5 ± 1.7syst) M⊙ pc−2. While the statistical errors are small, the error budget of the derived quantities is dominated by the three to seven times larger systematic uncertainties. These values are consistent with our previous determination, but the systematic uncertainties are reduced due to the extended data set covering a larger spatial extent of the Milky Way disk. Furthermore, we test the influence of nonaxisymmetric features on our resulting model and analyze how a flaring disk model would change our findings.SDSS-IV MaNGA: Integral-field kinematics and stellar population of a sample of galaxies with counter-rotating stellar disks selected from about 4000 galaxies
Resolved nuclear kinematics link the formation and growth of nuclear star clusters with the evolution of their early and late-type hosts
SDSS-IV MaNGA: Refining strong line diagnostic classifications using spatially resolved gas dynamics
Abstract:
We use the statistical power of the MaNGA integral-field spectroscopic galaxy survey to improve the definition of strong line diagnostic boundaries used to classify gas ionization properties in galaxies. We detect line emission from 3.6 million spaxels distributed across 7400 individual galaxies spanning a wide range of stellar masses, star formation rates, and morphological types, and find that the gas-phase velocity dispersion σHα correlates strongly with traditional optical emission-line ratios such as [S ii]/Hα, [N ii]/Hα, [O i]/Hα, and [O iii]/Hβ. Spaxels whose line ratios are most consistent with ionization by galactic H ii regions exhibit a narrow range of dynamically cold line-of-sight velocity distributions (LOSVDs) peaked around 25 km s−1 corresponding to a galactic thin disk, while those consistent with ionization by active galactic nuclei (AGNs) and low-ionization emission-line regions (LI(N)ERs) have significantly broader LOSVDs extending to 200 km s−1. Star-forming, AGN, and LI(N)ER regions are additionally well separated from each other in terms of their stellar velocity dispersion, stellar population age, Hα equivalent width, and typical radius within a given galaxy. We use our observations to revise the traditional emission-line diagnostic classifications so that they reliably identify distinct dynamical samples both in two-dimensional representations of the diagnostic line ratio space and in a multidimensional space that accounts for the complex folding of the star-forming model surface. By comparing the MaNGA observations to the SDSS single-fiber galaxy sample, we note that the latter is systematically biased against young, low-metallicity star-forming regions that lie outside of the 3'' fiber footprint.