Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

The KLEVER survey: Nitrogen abundances at $z\sim$2 and probing the existence of a fundamental nitrogen relation

(2021)

Authors:

Connor Hayden-Pawson, Mirko Curti, Roberto Maiolino, Michele Cirasuolo, Francesco Belfiore, Michele Cappellari, Alice Concas, Giovanni Cresci, Fergus Cullen, Chiaki Kobayashi, Filippo Mannucci, Alessandro Marconi, Massimo Meneghetti, Amata Mercurio, Yingjie Peng, Mark Swinbank, Fiorenzo Vincenzo
More details from the publisher

SDSS-IV MaNGA: Stellar M/L gradients and the M/L-colour relation in galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 507:2 (2021) 2488-2499

Authors:

Junqiang Ge, Shude Mao, Youjun Lu, Michele Cappellari, Richard J Long, Renbin Yan

Abstract:

The stellar mass-to-light ratio gradient in SDSS r-band ∇(M*/Lr) of a galaxy depends on its mass assembly history, which is imprinted in its morphology and gradients of age, metallicity, and stellar initial mass function (IMF). Taking a MaNGA sample of 2051 galaxies with stellar masses ranging from 109 to 1012M⊙ released in SDSS DR15, we focus on face-on galaxies, without merger and bar signatures, and investigate the dependence of the 2D ∇(M*/Lr) on other galaxy properties, including M*/Lr-colour relationships by assuming a fixed Salpeter IMF as the mass normalization reference. The median gradient is ∇M*/Lr ∼ −0.1 (i.e. the M*/Lr is larger at the centre) for massive galaxies, becomes flat around M* ∼ 1010M⊙ and change sign to ∇M*/Lr ∼ 0.1 at the lowest masses. The M*/Lr inside a half-light radius increases with increasing galaxy stellar mass; in each mass bin, early-type galaxies have the highest value, while pure-disc late-type galaxies have the smallest. Correlation analyses suggest that the mass-weighted stellar age is the dominant parameter influencing the M*/Lr profile, since a luminosity-weighted age is easily affected by star formation when the specific star formation rate (sSFR) inside the half-light radius is higher than 10−3 Gyr−1. With increased sSFR gradient, one can obtain a steeper negative ∇(M*/Lr). The scatter in the slopes of M*/L-colour relations increases with increasing sSFR, for example, the slope for post-starburst galaxies can be flattened to 0.45 from the global value 0.87 in the M*/L versus g − r diagram. Hence converting galaxy colours to M*/L should be done carefully, especially for those galaxies with young luminosity-weighted stellar ages, which can have quite different star formation histories.

More details from the publisher
Details from ORA
More details

Dynamical model of the Milky Way using APOGEE and Gaia data

Astrophysical Journal IOP Publishing 916:2 (2021) 112

Authors:

Maria Selina Nitschai, Anna-Christina Eilers, Nadine Neumayer, Michele Cappellari, Hans-Walter Rix

Abstract:

We construct a dynamical model of the Milky Way disk from a data set that combines Gaia EDR3 and APOGEE data throughout galactocentric radii in the range 5.0 kpc ≤ R ≤ 19.5 kpc. We make use of the spherically aligned Jeans anisotropic method to model the stellar velocities and their velocity dispersions. Building upon our previous work, our model is now fitted to kinematic maps that have been extended to larger galactocentric radii due to the expansion of our data set, probing the outer regions of the Galactic disk. Our best-fitting dynamical model suggests a logarithmic density slope of αDM = −1.602 ± 0.079syst for the dark matter halo and a dark matter density of ρDM(R⊙) = (8.92 ± 0.56syst) × 10−3 M⊙ pc−3 (0.339 ± 0.022syst GeV cm3). We estimate a circular velocity at the solar radius of vcirc = (234.7 ± 1.7syst) km s−1 with a decline toward larger radii. The total mass density is ρtot(R⊙) = (0.0672 ± 0.0015syst) M⊙ pc−3 with a slope of αtot = −2.367 ± 0.047syst for 5 kpc ≤ R ≤ 19.5 kpc, and the total surface density is Σ(R⊙, ∣z∣ ≤ 1.1 kpc) = (55.5 ± 1.7syst) M⊙ pc−2. While the statistical errors are small, the error budget of the derived quantities is dominated by the three to seven times larger systematic uncertainties. These values are consistent with our previous determination, but the systematic uncertainties are reduced due to the extended data set covering a larger spatial extent of the Milky Way disk. Furthermore, we test the influence of nonaxisymmetric features on our resulting model and analyze how a flaring disk model would change our findings.
More details from the publisher
Details from ORA
More details
Details from ArXiV

SDSS-IV MaNGA: Integral-field kinematics and stellar population of a sample of galaxies with counter-rotating stellar disks selected from about 4000 galaxies

(2021)

Authors:

Davide Bevacqua, Michele Cappellari, Silvia Pellegrini
More details from the publisher
Details from ArXiV

Resolved nuclear kinematics link the formation and growth of nuclear star clusters with the evolution of their early and late-type hosts

(2021)

Authors:

Francesca Pinna, Nadine Neumayer, Anil Seth, Eric Emsellem, Dieu D Nguyen, Torsten Boeker, Michele Cappellari, Richard M McDermid, Karina Voggel, C Jakob Walcher
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Current page 22
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet