WISDOM project – XXIII. Star-formation efficiencies of eight early-type galaxies and bulges observed with SITELLE and ALMA
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 540:1 (2025) staf675
Abstract:
Early-type galaxies (ETGs) are known to harbour dense spheroids of stars with scarce star formation (SF). Approximately a quarter of these galaxies have rich molecular gas reservoirs yet do not form stars efficiently. These gas-rich ETGs have properties similar to those of bulges at the centres of spiral galaxies. We use spatially resolved observations (∼100 pc resolution) of warm ionized-gas emission lines (Hβ, [O iii], [N ii], H, and [S ii]) from the imaging Fourier transform spectrograph SITELLE at the Canada-France-Hawaii Telescope and cold molecular gas [12CO(2-1) or 12CO(3-2)] from the Atacama Large Millimeter/submillimeter Array to study the SF properties of eight ETGs and bulges. We use the ionized-gas emission lines to classify the ionization mechanisms and demonstrate a complete absence of regions dominated by SF ionization in these ETGs and bulges, despite abundant cold molecular gas. The ionization classifications also show that our ETGs and bulges are dominated by old stellar populations. We use the molecular gas surface densities and H -derived SF rates (in spiral galaxies outside of the bulges) or upper limits (in ETGs and bulges) to constrain the depletion times (inverse of the SF efficiencies), suggesting again suppressed SF in our ETGs and bulges. Finally, we use the molecular gas velocity fields to measure the gas kinematics, and show that bulge dynamics, particularly the strong shear due to the deep and steep gravitational potential wells, is an important SF regulation mechanism for at least half of our sample galaxies.WISDOM project -- XXIII. Star-formation efficiencies of eight early-type galaxies and bulges observed with SITELLE and ALMA
(2025)
E-INSPIRE – I. Bridging the gap with the local Universe: stellar population of a statistical sample of ultra-compact massive galaxies at z < 0.3
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2440-2458
Abstract:
This paper presents the first effort to Extend the Investigation of Stellar Populations In RElics (E-INSPIRE). We present a catalogue of 430 spectroscopically confirmed ultra-compact massive galaxies (UCMGs) from the Sloan Digital Sky Survey at redshifts . This increases the original INSPIRE sample eightfold, bridging the gap with the local Universe. For each object, we compute integrated stellar velocity dispersion, age, metallicity, and [Mg/Fe] through spectroscopic stellar population analysis. We infer star formation histories (SFHs), metallicity evolution histories (MEHs) and compute the Degree of Relicness (DoR) of each object. The UCMGs, covering a wide range of DoR from 0.05 to 0.88, can be divided into three groups, according to how extreme their SFH was. The first group consists of 81 extreme relics () that have formed the totality of their stellar mass by and have super-solar metallicities at all cosmic epochs. The second group () contains 293 objects also characterized by peaked SFHs but with a small percentage of later-formed stars and with a variety of MEHs. The third group (), has 56 objects that cannot be considered relics since they have extended SFHs and formed a non-negligible fraction ( per cent) of their stellar mass at . We conclude that the most efficient method of finding relics is to select UCMGs with a combination of large velocity dispersion values (as already found by INSPIRE), super-solar metallicities and high [Mg/Fe].GPU-Accelerated Gravitational Lensing & Dynamical (GLaD) Modeling for Cosmology and Galaxies
(2025)
Early-Type Galaxies: Elliptical and S0 Galaxies, or Fast and Slow Rotators
(2025)